Pipelined A/D converters

Nagendra Krishnapura,

Fall 2004: Analog Systems in VLSI
Columbia University
New York, NY 10027.
OUTLINE

- Two step A/D converter
- Two step A/D converter with digital correction
- 1.5 b/stage pipelined converter with digital correction
Two step flash converter

• A/D 1 quantizes the input to M bits

• Ideally, $0 \leq V_q \leq V_{LSB1}$ ($V_{LSB1} = V_{ref}/2^M$)

• A/D 2 quantizes the amplified residue ($2^M V_q$) of A/D 1 to K bits

• A/D 1 needs to be accurate to $N = M + K$ bits, A/D 2 to K bits. See HW4 solutions for detailed calculations.

• Overall resolution is $N = M + K$ bits. A/D 1 provides M bits (MSB), A/D 2 provides K bits (LSB)
Two step flash converter with digital correction

\[V_{in} \rightarrow S/H \rightarrow A/D1 \rightarrow D/A \rightarrow \Sigma \rightarrow 2^{M-1} \rightarrow A/D2 \rightarrow K \text{ bits} \]

\[V ref \]

\[V_{LSB1} \]

\[2V_{LSB1} \]

\[V ref \]

\[V q \]

\[2^{M-1}V q \]

\[V ref \]

\[V_{LSB1} \]

\[2V_{LSB1} \]

\[\ldots \]

\[2^{M-1}V_{LSB1} \]
Two step flash converter with digital correction

- A/D 1 quantizes the input to M bits
- With INL=0.5LSB, $0 \leq V_q \leq 2V_{LSB1}$ ($V_{LSB1} = V_{ref}/2^M$)
- Amplify by 2^{M-1} instead of 2^M so that the amplified residue is contained in $(0, V_{ref})$, the range of A/D 2
- A/D 2 quantizes the amplified residue ($2^{M-1}V_q$) of A/D 1 to K bits
Two step flash converter with digital correction

- A/D 2 output can be used to determine if the output of A/D 1 needs correction
 - $0 \leq 2^{M-1}V_q < V_{ref}/4$: reduce A/D 1 output by 1
 - $V_{ref}/4 \leq 2^{M-1}V_q < 3V_{ref}/4$: Use A/D 1 output as is
 - $3V_{ref}/4 \leq 2^{M-1}V_q < V_{ref}$: increase A/D 1 output by 1

- A/D 1 needs to be accurate to M bits, A/D 2 to $K + 1$ bits.

- Overall resolution is $N = M + K$ bits. 1 bit redundancy in A/D 2 helps relax A/D,1 requirements from N bits to M bits. A significant practical advantage. A/D 1 provides M-1 bits (MSB) and A/D 2 provides K+1 bits (LSB).
Multi step (pipelined) A/D converter with 1 effective bit/stage

- Having a multi step converter with 1 corrected bit per stage as described above implies 2 bit raw resolution in each stage. This means a 2 bit A/D converter, 2 bit D/A converter and an amplifier of gain 2. It turns out that this is not necessary and a 1.5 bit resolution in each stage provides exactly the same effective resolution as a 2 bit resolution in each stage. This leads to significant savings in hardware.
1.5 bits/stage vs. 2 bits/stage: Structure

1.5 bits A/D

- 7/8V_{ref}
- 3/4V_{ref}
- 5/8V_{ref}
- 1/2V_{ref}
- 1/4V_{ref}
- 1/8V_{ref}
- 3/8V_{ref}

D_{out}

2 bit A/D

- 7/8V_{ref}
- 3/4V_{ref}
- 5/8V_{ref}
- 1/2V_{ref}
- 1/4V_{ref}
- 1/8V_{ref}
- 3/8V_{ref}

D_{out}

Vi
1.5 bits/stage vs. 2 bits/stage: Residue

A/D characteristics
D/A output

1.5 bit A/D
V_{D/A}

2 bit A/D
V_{D/A}

residue, with an ideal A/D
residue, with a nonideal A/D

A/D characteristics
D/A output

INL=+0.5LSB (2 bits)
INL=-0.5LSB (2 bits)

INL=+0.5LSB (2 bits)
INL=-0.5LSB (2 bits)
1.5 bits/stage vs. 2 bits/stage

- In the ideal case, having 2 bits per stage has a smaller range of residue than having 1.5 bits/stage
- In the nonideal case (INL < 0.5 LSB at the 2 bit level), having 2 bits per stage and 1.5 bits/stage result in exactly the same range of residues
- Therefore, there is no need to resolve 2 bits. 1.5 bits are enough
Digital correction

1.5 bit stage is followed by an ideal 2 bit stage. This can be used to obtain 1 effective bit from the first stage.
1.5 b/stage pipelined A/D converter with digital correction

Analog path
Quantizer and residue generator

Digital path
Digital correction

V_{in} \rightarrow \text{S/H} \rightarrow \text{A/D} \rightarrow \text{D/A} + \text{V_q} \rightarrow 2\text{V_q}

\text{C_N} \rightarrow \text{D_{N-1}} \rightarrow \text{D_N}

D_N = D_{N-1} \cdot 2^{N-2}C_N

C_N: \{0, 1, 2\}
D_N: 0 \text{ to } 2^{N-1}-1
D_{N-1}: 0 \text{ to } 2^{N-2}-1
1.5 b/stage pipelined A/D converter with digital correction

- The last stage is not digitally corrected. It has an output D_2 with a 2 bit resolution.

- The last stage provides digital correction to the previous stage. D_2 and C_3 are used to obtain a 3 bit output D_3 corresponding to the analog voltage V_3.

- D_3 and C_4 are used to obtain D_4, the digital representation of V_4 and so on...
1.5 b/stage pipelined A/D converter with digital correction

- The analog residue propagates from the left to the right in the figure. The digitally corrected output propagates from the right to the left.

- Digital delays are needed to combine the stage outputs \((C_N, D_{N-1})\) appropriately. These are not shown in the figure.

- If the residue needs one clock cycle to propagate through each stage and the digital correction needs 1 cycle in each stage, the net latency is \(\approx 2NT_{\text{clk}}\) where \(N\) is the resolution of the A/D converter.