Packaging

• Need to choose a package
 – 28pin DIP (Dual in line package)
 – 40pin DIP
 – 65pin PGA (pin grid array; not sure of availability - wait for me to confirm)

• Determine the bonding diagram
 – Connections of the chip pad to the pins
Packaging

• Need to choose a package
 – 28pin DIP (Dual in line package)
 – 40pin DIP
 – 65pin PGA (pin grid array)

• Determine the bonding diagram
 – Connections of the chip pad to the pins
 – Need this for PCB design

• Chip area (including pads): 1.5mmx3.0mm

• Package cavity size: 310mil (7.75mm, for 28pin and 40pin DIPs)
Bonding diagram example

- Sketch of chip inside the package and associated bondwires
- Clearly show the “north” of the chip and package orientation
Chip bondpads

- Pads: connection points to the outside world
Chip bondpads

- Input/outputs on opposite sides
- Shorter wires (bondwire + package) for critical signals
AMI050 pads

- Readymade layouts available
- 1.5mmx1.5mm padframe available
 - Pad rows
 - Corner pieces
 - VDD/GND lines for ESD protection connections
- Make 3mmx1.5mm from the above padframe
- Pads
 - GND(PadGnd)
 - VDD(PadVdd)
 - Digital input signal(PadIO)
 - General purpose(PadAref)
ESD protection

• ESD protection circuitry prevent on chip voltages from going too high or low and damaging the device
 – Manual handling of the device-e.g. During assembly/test

• Clamping circuitry to limit the voltage

• Clamping circuitry presents (nonlinear) capacitance to the circuit-can affect its operation
Basic ESD protection circuitry

- Vpad limited to (-0.7V, Vdd+0.7V)
AMI050: ESD protection-general

- **Mechanisms:**
 - Diode current
 - nMOS/pMOS current
AMI050: ESD protection-input

- R at the input slows down voltage buildup at the gate
AMI050: ESD protection-vdd,gnd

Diagram showing ESD protection circuits.
AMI050: pads

- Pads:
 - PadARef: digital outputs, all analog inputs/outputs
 - PadIO: digital inputs
 - PadVdd: Vdd
 - PadGnd: Gnd

- Use only the above pads

- Currently not DRC clean-soon will be so