Motivation

- Gain experience in completing the sequence of steps in IC design.
- Measurement of a completed chip- seeing the results in the lab- far more satisfying than design itself.
Course objectives

• Complete design of a chip
 – Design
 – Simulation
 – Layout
 – Verification
 – Package configuration

• Preparation for measurement
 – Design of test setup
 – PCB layout
Measurement of the chip

• 10-12 weeks to process the chip. Will get the packaged chips in June-July.
• Need to go to CISL and measure it on the PCB that is already designed.
Design for fabrication

- Lot more than mere “paper design”. An “all or nothing” proposition. Need to finish all the steps before the chip submission deadline.
- Important to choose a design that is challenging, yet small enough that it can be completed in ~12 weeks.
Process technology

• AMI 0.5μm CMOS
 - 0.5μm minimum length MOS devices
 - 3 metal, 2 poly layers (poly- poly capacitors)
 - High resistivity layer for resistors
 - Power supply voltage ? 5V
 - 1.5mm x 1.5mm die; ~1.2mm x 1.2mm excluding pads
• 28 pin / 40 pin ceramic packages.
Why AMI 0.5µm process?

- Available through MOSIS instructional account.
- Frequent fabrication runs.
- Somewhat “old” (current processes- 0.13µm to 0.25µm).
- Sufficient for our needs- circuits of 100s MHz can be fabricated.
- Upto 5V supply: gives extra flexibility.
Chip design: circuit design

- “Paper design”: block diagram, essential building blocks; sanity check;
- Transistor level circuit design
 - Design and simulation of building blocks
- Integration of building blocks
 - Simulation of the entire design
Chip design: layout

• Layout of individual blocks
 – Drafting the layout
 – Design rule check

• Extraction
 – Extraction of netlist from schematics
 – Layout vs. schematic check
 – Parasitic extraction- resimulation with parasitics; especially important at high frequencies
Chip design: packaging

• Choice of package
 – Number of pins
 – Signal frequencies

• Padframe design
 – Pad layout on the chip(along the periphery)
 – ESD protection circuits
Chip design: finishing the chip

- Placing the design in the padframe
- Connections to the pads
- Extraction of the entire chip and simulation including pads and ESD structures
 - Pads, ESD structures: parasitic loading
 - Bond wire inductors: inductive impedance in series with pins
E4332: Course structure

● First half of the course
 - Lectures on IC design steps
 - Detailed lectures on design

● Second half of the course
 - Design reviews
 - Final presentations
 - I'll be here as a design consultant
Design ideas

- Digital clock
 - 7 segment display, binary display etc.
- AM radio
 - Tuned radio frequency
 - Superheterodyne
Digital clock

- Chain of dividers, display decoders and drivers
Digital clock

• Essential components
 – Timebase
 – Chain of dividers
 – Divided output to display (hh:mm) decoders
 – Time setting

• Extra features
 – Alarm
 – Seconds display
 – Days, months, years, ...
Other projects similar to the clock

- **Timer**
 - Multiple timers
 - Continuous repeat
- **Stopwatch**
 - Multiple laps
- **Chess timer**
AM Radio- TRF (E1201 style)

- Detector loads the tuned circuit
- No amplification - Antenna signal needs to be strong enough
- Can only drive high impedance headphones
AM Radio- active TRF

- Buffer isolates the coil from following circuits
 - Tuned circuit can have a high Q
AM Radio- active TRF

• Buffer isolates the coil from following circuits
 – Tuned circuit can have a high Q
• Amplification possible- can receive weaker signals.
• Can drive a speaker.
• Input tuned circuit bandwidth varies across the AM band(530-1610kHz)
AM Radio- Superheterodyne

- Input tuning can be fixed for AM broadcast band
AM Radio- Superheterodyne

- Channel selection is in the IF stage
 - Constant bandwidth
- More gain before detection.
- Need to have coupled input/local oscillator tuning.
- Can drive a speaker.
Other projects

- You can choose to do something else, but decide by next week! Don't be overambitious
- A/D, D/A converters
- Operational amplifiers
- Single ended to differential converter
Design challenges

- Digital clock, AM radio: low frequency circuits, but
 - Need to complete it!
 - Minimize power
 - Minimize supply voltage
 - etc.