1. Design a CMOS inverter with minimum length p- and n-channel devices with equal widths.

(a) Simulate the DC characteristics with a 5 V supply. What V_{IH}, V_{IL}, assuming that the output low and high voltages away from their ideal values by 10% of the supply voltage.

(b) Design a 7 stage ring oscillator using the inverters designed above. What is the oscillation frequency? Repeat the simulations with supply voltages from 2.5 V to 4.5 V in increments of 0.5 V and determine the oscillation frequency in each case.

2. Design an inverter with p- and n-channel MOS device widths such that the transition in the inverter’s characteristics is in the middle of the 5 V supply rail. Repeat the DC and transient simulations specified in the previous problem with this inverter.

3. Determine “textbook” I_D vs. V_{DS} ($0 \leq V_{DS} \leq 5$ V) curves (Fig. 2(a)) for V_{GS} from 1 V to 5 V in increments of 0.5 V. Do this for transistors of lengths 0.5 μm, 1 μm, and 2 μm (three sets of curves for p- and n-channel transistors). Use $W/L = 10$ in each case. In each of the curves, determine the slope in the saturation region, and the corresponding output resistance of the transistor.

4. Determine “textbook” I_D vs. V_{GS} ($0 \leq V_{GS} \leq 5$ V) curves (Fig. 2(b)) with $V_{DS} = 3$ V. Do this for transistors of lengths 0.5 μm, 1 μm, and 2 μm (three sets of curves each for p- and n-channel transistors). Use $W/L = 10$ in each case. From the curves, determine the current factors $K_{n,p}$ and the threshold voltages V_{THN}, V_{THP}.
5. For the circuit in Fig. 3, carry out a parametric simulation as I_{in} from 1 μA to 100 μA in 7 logarithmically spaced steps. Plot a) the DC value of V_{GS}, b) the inherent dc gain of the transistor g_{m}/g_{ds}, and c) the unity gain frequency of the transistor gain. For c), you need to do a parametric ac analysis. Do this for n- and p-channel transistors of 0.5 μm and 2 μm channel lengths. Use $W/L = 10$ in each case.