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S = Σ + jΩ Prototype frequency variable

s = σ + jω Transformed frequency variable

H0(S) =

∏m
k=1

(

1 − S
Zk

)

∏n
k=1

(

1 − S
Pk

) Prototype transfer function

H(s) =

∏M
k=1

(

1 − s
zk

)

∏N
k=1

(

1 − s
pk

) Transformed transfer function

The prototype transfer function H0(s) has n poles, m finite zeros, and n−m zeros at infinity1 . Ap and As are
the attenuation of the prototype filter at Ωp and Ωs. Ap = −20 log10 |H0(Ωp)|, As = −20 log10 |H0(Ωs)|.

1 Lowpass to Lowpass transformation

• Transformation

S

Ωp

↔ s

ωp

S = jΩ ↔ s = jω = j
Ωωp

Ωp

• Scaled poles and zeros

Zk ↔ Zkωp

Ωp

Pk ↔ Pkωp

Ωp

• Every real pole P results in a scaled real pole p.

• Every complex conjugate pole pair Pr ± jPi results in a complex conjugate pole pair pr ± jpi. The
prototype and the transformed pole pairs have the same quality factor.

• Resulting filter has N = n poles and M = m finite zeros.
1Usually not mentioned explicitly
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2 Lowpass to Highpass transformation

• Transformation

S

Ωp

↔ ωp

s

S = jΩ ↔ s = −j
Ωpωp

Ω

• “Inverted” poles and zeros

Zk ↔ zk =
Ωpωp

Zk

Pk ↔ pk =
Ωpωp

Pk

• Every real pole P results in a scaled real pole p.

• Every complex conjugate pole pair Pr ± jPi results in a complex conjugate pole pair pr ± jpi. The
prototype and the transformed pole pairs have the same quality factor.

• Resulting filter has N = n poles. The n − m zeros at infinity move to the origin.

3 Lowpass to Bandpass transformation

• Transformation: Ω = 0 (dc) transforms to ω = ω0 (geometric center of the passband). Every fre-
quency is transformed into two frequencies whose geometric mean is ω0. i.e. if there is a peak
at Ωpeak in the prototype response, the transformed response has two peaks at ωp1 and ωp2 where
ωp1ωp2 = ω2

0
.

S

Ωp

↔ 1

ωb

s2 + ω2
0

s

jΩ ↔ j
Ωp

ωb

ω2 − ω2
0

ω

• ωb is the bandwidth, the width of the passband |ωp1 − ωp2|, within which the attenuation is less than
Ap.

• Every real pole P is transformed into a complex conjugate pole pair pr ± jpi.

• Every complex conjugate pole pair Pr ± jPi is transformed into two complex conjugate pole pairs
pr1 ± jpi1 and pr2 ± jpi2 both of which have the same quality factor Q. The quality factor of the
transformed pole pair increases as the ratio ω0/ωb increases.

• Resulting filter has N = 2n poles. The order is doubled.
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4 Lowpass to Band elimination transformation

• Transformation: Ω = 0 (dc) transforms to ω = ω0 (geometric center of the stopband). Every fre-
quency is transformed into two frequencies whose geometric mean is ω0. i.e. if there is a peak
at Ωpeak in the prototype response, the transformed response has two peaks at ωp1 and ωp2 where
ωp1ωp2 = ω2

0
.

S

Ωp

↔ ωb

s

s2 + ω2
0

jΩ ↔ −jΩpωb

ω

ω2 − ω2
0

• ωb is the width of the band, |ωp1 − ωp2|, within which the attenuation is more than Ap.

• Every real pole P is transformed into a complex conjugate pole pair pr ± jpi.

• Every complex conjugate pole pair Pr ± jPi is transformed into two complex conjugate pole pairs
pr1 ± jpi1 and pr2 ± jpi2 both of which have the same quality factor Q. The quality factor of the
transformed pole pair increases as the ratio ω0/ωb increases.

• Resulting filter has N = 2n poles. The order is doubled.

5 Using frequency transformation to synthesize filters

• If it is a bandpass or a band elimination filter, convert the specified frequencies ω ′

p1,p2
, ω′

s1,s2 to
ωp1,p2, ωs1,s2 which have the same geometric mean ω0 (ωp1ωp2 = ωs1ωs2 = ω2

0
). While doing so, the

specifications should be tightened2 , not loosened.

• Translate the given specifications As, Ap, ωp, ωs (or ωp1,p2, ωs1,s2) to a lowpass prototype specifica-
tion As, Ap, Ωp, Ωs. The choice of Ωp or Ωs depends on the available filter tables.

• Look up3 the filter transfer function that satisfies As, Ap, Ωp, Ωs. There are usually several types of
filters. The choice depends on complexity of the active realization or additional specs., e.g. group
delay, if present.

• If a cascade structure is being designed, factorize the transfer functions into first and second order
terms in the numerator and the denominator. Transform the prototype transfer function into the desired
transfer function. Realize each pole/pole-pair (with associated zeros) using opamp-RC or gm-C first
and second order structures.

• If a ladder structure is being designed, look up the corresponding prototype ladder structure. Trans-
form the passive structure (Fig. 1) into the desired filter. Realize the resulting structure using element
replacement or leapfrog synthesis.

• Simulate the resulting active structure with ideal components to verify the integrity of the design.
Resimulate with nonidealities and modify/improve the circuit if need be.
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prototype lowpass highpass bandpass band elimination

Figure 1: Transformation of passive elements

A filter design software package can eliminate one or more steps in the synthesis. You could get the
poles and zeros and the passive ladder structure directly from the specifications. Mathematical tools like
MATLAB can provide you poles and zeros for a variety of standard filter types. Note that unnormalized
coefficients, as provided by MATLAB, can have a very wide range4, especially in high order filters and can
lead to gross errors in the frequency response. In those cases, the tool can be used to design a low frequency
prototype and the resulting poles and zeros scaled up.

2The transition bandwidth will decrease on one of the sides
3A. I. Zverev, Handbook of Filter Synthesis, Wiley, New York, 1967. The mother of all filter tables!
4e.g. The denominator of a second order filter with ωp = 1 Grad/s and Q = 1 is 10

−18s + 10
−9s + 1.
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Low pass prototype Low pass High pass Band pass Band stop

passband attenuation ≤ Ap dB

stopband attenuation ≥ As dB

passband edge(s) Ωp ωp ωp ωp1, ωp2 ωp1, ωp2

stopband edge(s) Ωs ωs ωs ωs1, ωs2 ωs1, ωs2

frequency variable S = Σ + jΩ s = σ + jω

Equivalence
S

Ωp

s

ωp

ωp

s

1

ωb

s2 + ω2
0

s
ωb

s

s2 + ω2
0

Equivalence
Ω

Ωp

ω

ωp

−ωp

ω

1

ωb

ω2 − ω2
0

ω
−ωb

ω

ω2 − ω2
0

parameters ω0 =
√

ωp1ωp2 =
√

ωs1ωs2

ωb = ωp2 − ωp1

passband “center” Ω = 0 ω = 0 ω = ∞ ω = ±ω0 ω = 0,∞
stopband “center” Ω = ∞ ω = ∞ ω = 0 ω = 0,∞ ω = ±ω0
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