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Abstract

A VLSI Analog Computer / Math Co-processor

for a Digital Computer

Glenn Edward Russell Cowan

This dissertation investigates the utility of a programmable VLSI analog com-

puter for the solution of differential equations. To investigate the capability of analog

computing in a modern context, a large VLSI circuit (100 mm2) was designed and

fabricated in a standard mixed-signal CMOS technology. It contains 416 analog

functional blocks, switches for their interconnection, and circuitry for the system’s

program and control. This chip is controlled and programmed by a PC via a data

acquisition card. This arrangement has been used to solve differential equations with

acceptable accuracy, as much as 400x faster than a modern workstation.

The utility of a VLSI analog computer has been demonstrated by solving sto-

chastic differential equations, partial differential equations, and ordinary differential

equations (ODEs). Additionally, techniques for using the digital computer to refine

the solution from the analog computer are presented. Solutions from the analog com-

puter have been used to accelerate a digital computer’s solution of the periodic steady



state of an ODE by more than an order of magnitude.

An analysis has been done showing that the analog computer dissipates 0.02

% to 1 % of the energy of a digital general purpose microprocessor and about 2 %

to 20 % of the energy of a digital signal processor, when solving the same differential

equation.
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Chapter 1

Introduction

1.1 Motivation

Analog computers of the 1960s were physically large, tedious to program and required

significant user expertise. However, once programmed, they rapidly solved a variety

of mathematical problems, notably differential equations, without time-domain dis-

cretization artifacts, albeit with only moderate accuracy [1]. Analog computers were

superseded by digital ones long ago; the technical community has hardly considered

what advantages modern VLSI techniques could impart to analog computers.

Digital computers can solve differential equations with very high accuracy.

However, they may suffer from a variety of convergence problems. Further, some

simulations may take a long time. This can preclude repeatedly solving the equations

as part of design optimization. In real-time control applications, long simulation time

may require that a simpler and possibly inferior model be simulated.
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Figure 1.1: Analog computation environment.

This thesis reports on the results of a first attempt to investigate whether

analog computers could be revived in a modern VLSI context [2], with significant ad-

vantages as complements to digital computers. A single-chip VLSI analog computer

(AC) is presented, capable of handling large-order problems (e.g., nonlinear differ-

ential systems of up to 80 first-order equations), specifically meant to operate in a

symbiotic environment with a digital computer (Fig. 1.1), complementing the latter

and acting as a co-processor to it. This combination makes possible several features:

• Tight coupling to the digital computer through an A/D-D/A interface which

facilitates a pre-computation calibration process.

• Digital programmability through a standard on-screen user interface.

• Real-time simulations and real-time observation of the effects of mathematical
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parameter changes.

• Fast approximate solutions to difficult mathematical problems, sometimes much

faster than is possible with a digital computer, and with guaranteed convergence

to a physical solution.

• Capability of passing an approximate solution, as a first guess to a digital com-

puter, thus speeding up a numerical solution.

• Interfacing to measuring instruments.

1.2 History of Analog Computation

Historically analog computers primarily solved the differential equations necessary for

system simulation. Analog circuits can solve ordinary differential equations (ODEs)

written in the form ẋ = f(x, u, t), where x is a vector of state variables of length

n, u is a vector of inputs of length m, f is a vector of possibly nonlinear functions

of length n, and t is time. To solve this, an AC needs n integrators, m inputs and

sufficient circuitry to implement f , or an adequate approximation to it. In addition,

techniques exist (e.g. method of lines [3]) for converting partial differential equations

(PDEs) to ODEs of the above form.

Interest in analog computers decreased in the 1960s and 1970s as digital com-

puters became more advanced. One of the few remaining applications of analog

computers today is a back-up system in the Soyuz spacecraft.
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Some of the closest examples of modern (continuous-time) special-purpose ana-

log computation are some efforts in the area of reconfigurable analog hardware [4],

sometimes referred to field programmable analog arrays (FPAAs). These have gained

the interest of researchers, and some products have been released, though they typi-

cally are for linear filtering applications. While implementing a filter is synonymous

with implementing a differential equation, a progammable filter is less general than

what is proposed here.

Large analog VLSI systems have been designed to solve many problems by

emulating neural systems [5]. These are special purpose circuits capable of performing

a particular function and do not solve differential equations.

For the purpose of solving differential equations, some discrete-time (DT) de-

vices have been designed [6], [7]. These, however, may still add artifacts stemming

from the discretization of time that occurs when continuous-time ODEs are mapped

to the discrete-time equations that are solved by the DT computer.

While no general purpose VLSI analog computers exist today, researchers have

built custom analog computers to investigate solitons [8] and nonlinear oscillators [9].

The idea of coupling an analog computer to a digital computer has been studied

in detail over the years. One of the most interesting ways of pairing the two types of

computers that is reported in the literature, iteratively uses an analog computer to

compute a correction term in a root finding algorithm [10].
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1.3 Overview of this Thesis

Chapter 2 describes how analog and digital computers each solve differential equa-

tions, and their respective strengths and weaknesses. The design of a large VLSI

analog computer is outlined in Chapter 3 and the hybrid computation environment

in which it is used is described in Chapter 4. The performance of the individual

circuit blocks is summarized in Chapter 5. Chapter 6 gives representative examples

of differential equations solved by the analog computer and Chapter 7 describes how

the analog computer’s solution can be used and refined by a digital computer in a

way that speeds up the digital computer’s solution. Chapter 8 compares this ana-

log computer to a digital computer in terms of power consumption and computation

speed. Chapter 9 gives some suggestions for future work in this field.
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Chapter 2

Review of Digital and Analog

Computer Techniques

2.1 Digital Computation

2.1.1 Solving Differential Equations on a Digital Computer

Solution to Initial Value Problems, Computed Point by Point

The functions that are solutions to ODEs are continuous in time; however, digital

computers calculate the solution at a series of time points. The differential equations

are mapped to a set of difference equations and solved. How this mapping is done

has important consequences on the speed of the digital computer’s solution and the

required spacing of the time steps, and determines some of the stability properties of

the solution.
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For a more complete discussion of numerical routines, the reader is directed

to [11], [12] and [13]. What follows is an overview of some of the basic methods.

Consider the following first-order ODE:

ẋ = f(x, t) (2.1)

y = g(x, u, t) (2.2)

and suppose that its solution is desired over the interval of time (t0 to tf ) be-

ginning with initial condition x(t0) = x0. This discussion assumes that the functions

g are algebraic equations whose values are easily computed once x is known. As such,

the majority of the computational effort in solving for y is spent solving for x and the

discussion of equations in this form will center around the solution of x. The solution

to Eq. 2.1 at a time, t1 near t0, can be calculated from x0. The choice of the time

step from t0 to t1 is based on a number of error estimations, and is beyond the scope

of this thesis. Based on the derivative of x, x1 = x(t1) can be estimated by assuming

that x follows a straight line from x0 to x1. That is:

x1 = x0 + m(t1 − t0) (2.3)

Possible values for the slope m in Eq. 2.3, are f(x0, t0), f(x1, t1) or some combination

of the two. Consider the case of the former:

x1 = x0 + f(x0, t0)(t1 − t0) (2.4)

Since x1 is the only unknown, and it is isolated on the left side of the equation, it can

be calculated explicitly and very quickly. Routines that are explicit are referred to as
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predictor routines. Examples of predictor routines include the method above, known

as Forward Euler and Heun’s method which are one-step methods, since the solution

at only one time step is used to calculate the solution at the next time step. Other

predictor methods include various Runge-Kutta methods which use the solution at

several time steps and are called multi-step methods.

Generally speaking, taking smaller time steps leads to higher accuracy. How-

ever, as the time step is lengthened, the degradation in accuracy may be far from

graceful for a method such as Forward Euler. Taking time steps longer than the

shortest time constant in the system can lead to terribly inaccurate results due to

numerical instability and floating point rounding error, even if the dynamics asso-

ciated with that time constant have long since decayed. That is, fast dynamics in

the system require short time steps for the entire simulation. This characteristic of

Forward Euler makes it inappropriate for the simulation of many types of systems,

most notably, stiff systems. A system is said to be stiff if it contains dynamics that

have widely differing time constants.

On the other hand, if f(x1, t1) is used for the slope m in Eq. 2.3, larger time

steps can be used. However, the problem is more difficult to solve:

x1 = x0 + f(x1, t1)(t1 − t0) (2.5)

In the above, f(x1, t1) depends on x1, which is the unknown. If f is a nonlinear func-

tion, it may not be possible to solve for x1 explicitly, and hence this type of method

is said to be implicit (and a corrector method). The solution for x1 is typically found

using some sort of iterative root finding scheme such as Newton-Raphson iterations.
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These iterations are not guaranteed to converge if they begin with a starting value for

x1 that is separated from the correct value of x1 by a local extremum. The number of

iterations required to reach a given level of convergence will be smaller if the initial

value for x1 is closer to its correct value. As such, numerical routines often use a

combination of predictor and corrector methods. x1 is predicted by a method such

as Forward Euler, and then refined (corrected) by a method such as Backward Euler.

Other examples of corrector/implicit routines are the trapezoidal method, and the

gear2 method.

Each method has its own unique characteristics. The trapezoidal method can

give rise to trapezoidal ringing, a phenomenon in which the state variables exhibit

false oscillatory behaviour when the system is excited by a step function. For all of

these methods, a continuous-time (CT) system is mapped to a discrete-time (DT)

system. Ideally the stability characteristics of the CT and DT systems would be the

same as one another. That is, a CT system exhibiting bounded-input bounded-output

(BIBO) stability would be mapped to a DT system exhibiting BIBO stability, and

a CT system that did not exhibit BIBO stability would be mapped to a DT system

that also did not exhibit BIBO stability. This is very important as one of the most

important reasons for doing a simulation may be to determine if the system is stable.

The above methods also apply to cases in which x and f are vectors. Little is

changed in the predictor method, but the corrector methods require even more effort

since Newton-Raphson iterations are somewhat more complicated when f is a vector

of functions, as they may involve large-scale linear algebra.
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Waveform Relaxation

In the methods discussed in the previous section, the solution for every state variable

at a particular time step is calculated to a satisfactory accuracy before the solution

at the next time step is calculated. The solution, up to and including the current

time step, is known, and the solution at the next time step is an unknown. An

alternative to this technique is called waveform relaxation [14]. In this technique, the

solution over a time interval (t0 to tf ) for one state variable (say xi) is calculated,

while the other state variables are treated as knowns, and then the solution for the

next state variable (say xi+1) is calculated over the same time interval, assuming the

others are known. This is repeated until the solution for all state variables has been

calculated, at which point the process repeats, recalculating the state variables, one

at a time, over the solution interval, assuming that the other variables are known.

When acceptable convergence has been reached, the simulation stops.

This approach is used in large systems with only weak coupling between state

variables. In the case of stronger coupling a larger number of cycles is needed to

achieve a particular level of convergence.

Periodic Steady State

Engineers are frequently interested in the steady-state response of a nonlinear system

to a periodic input. The system has reached this so-called periodic steady state (PSS)

if each state variable xi satisfies:

xi(t + T ) = xi(t), all t (2.6)
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where T is the period of the state variables. T frequently is also the period of the

system’s input, if it has any inputs.

The condition in Eq. 2.6 allows us to consider the solution to the ODE over

only one period, which is discretized into n points. The derivatives at the last point

will depend on the value at the first point and vice versa, stemming from Eq. 2.6.

If the system has m state variables, over the n points there are a total of m × n

unknowns. Some periodic steady-state solvers perform Newton-Raphson iterations

on this vector of m× n unknowns [15].

Variations of this technique, rather than considering n unknown time points,

consider n/2 unknown complex-frequency components, which are related to the n

unknown time-points by the discrete-Fourier transform. Because the frequency com-

ponents are complex numbers, the frequency domain technique has the same number

of unknowns as the time domain approach. Frequency domain techniques can be

extended to multi-tone quasi-periodic excitations which are very useful in predicting

distortion in communication systems.

2.1.2 Strengths and Weaknesses of the Digital Approach

The following is a discussion of some of the strengths and weaknesses of the digital

approach.

Accuracy: Digital computers can achieve very high accuracy. However, to

reap the benefits of the large number of bits with which numbers are represented, in

some cases the solution must be computed at very finely-spaced time points. This
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can slow down the simulation.

Dynamic Range: Digital computers have very large dynamic range, owing

to the floating point representation of numbers.

Reconfigurabulity: Digital computers are easily reconfigured, and new func-

tions are easily approximated with series expansions or other techniques.

Requisite User Expertise: While users must become familiar with the soft-

ware running on the computer, they can be successful with limited understanding of

system theory and limited knowledge of the inner workings of the computer.

Speed: Digital computers perform individual floating point operations very

quickly. However, the large number of computations needed to solve large systems

of differential equations, or those equations which require computation at a large

number of time-points, may result in long simulations.

Cost: Digital computers are relatively inexpensive.

Numerical Artifacts: Because continuous-time, continuous-valued problems

are mapped to discrete-time, discrete-valued equations when solved on a digital com-

puter, several problems can ensue, namely non-convergence, changes in stability prop-

erties and other artifacts stemming from the approximation of the derivatives. These

problems primarily stem from the mapping to discrete-time, and not because the

digital computer represents numbers with discrete values.
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2.2 Analog Computation

2.2.1 Solving Differential Equations on an Analog Computer

Basics: Continuous-time ordinary differential equations (ODEs) are most easily

mapped to an analog system when they are written in state-space form:

ẋ = f(x, u, t) (2.7)

y = g(x, u, t) (2.8)

where x is a vector of state variables of length n, u is a vector of inputs of length m,

f is a vector of possibly nonlinear functions of length n, y is a vector of outputs of

length p, and g is a vector of possibly nonlinear functions of length p. To solve this,

an analog computer needs n integrators, m inputs, p outputs and sufficient circuitry

to implement f and g, or adequate approximations of them. This set of differential

equations is realized by denoting the output of the ith integrator as the ith state

variable (xi). Therefore, the input to the ith integrator is ẋi. Circuitry necessary to

implement the ith function in f , (fi), is used, the output of which is applied to the

input of the ith integrator. The circuits necessary to implement the ith function in g,

(gi), are used to generate the outputs of the system.

An example of a very simple ODE is a single-input, single-output, first-order,

linear time-invariant (LTI) system given by the following:

ẋ =
1

τ
(−x + u) (2.9)
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y = x (2.10)

Here, m, n and p are equal to 1. The result of the implementation procedure described

above is shown in Fig. 2.1. The mapping of this equation to an analog computer

requires an integrator, an amplifier that implements the gain 1
τ

and the means to

sum signals. To find the solution to this equation, over the time interval from 0 to a

�
�x x y,u 1

τ

Figure 2.1: Realization of a first-order, LTI ordinary differential equation.

final time point, tf with initial condition x(0) = x0, for a particular input u0(t), the

output of the integrator must be set to x0, and u0(t) over the interval from 0 to tf is

applied to the input of the analog system. The output y, measured over the interval

of time from 0 to tf is the solution to the differential equation.

The input u0(t) can be generated by a digital computer and applied to the

analog system via a digital to analog converter (DAC). Historically, the outputs were

plotted directly onto paper, but in modern analog systems the outputs are typically

measured by an analog-to-digital converter (ADC) and passed to a digital computer

for storage and further display.
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Scaling

For a system of differential equations solved on an analog computer a mapping is made

between the units of the equations’ variables to the units of the electrical quantities

of the analog computer. This mapping, frequently called scaling, is illustrated by

the following example. Assume that Eq. 2.9 and Eq. 2.10 reasonably model the

temperature of a barrel of hot water placed outside on a cool day, where x(t) is

the average temperature of the water in the barrel at any time instant, t, x0 is the

initial temperature of the water in the barrel, u0(t) is the temperature of the outside

air and τ is the time constant with which the barrel cools. For argument’s sake,

x0 = 70 C, u0(t) = 10 C and τ = 1800 s. While this can be represented by the

block diagram in Fig. 2.1, when it is mapped to the analog computer’s circuits, some

correspondence between the equation’s variables (x, u) which have units [C] and the

electrical quantities in the analog computer must be made, as the equation’s variables

will ultimately be represented by voltages or currents in the analog computer.

The temperature of the water will start at its initial temperature of 70 C and

will asymptotically, with exponential decay, approach its final temperature of 10 C if

t →∞. If the integrator being used is a voltage-mode circuit with a linear input and

output range of ±10 V, it would be appropriate to convert the equation’s variables

to the electrical quantities by scaling them by the factor 1
10

V
C

. With this scaling, the

output of the integrator will vary from 7 V to 1 V. Clearly, at least some prediction

of the bounds of the solution needs to be made.

Most analog computers have some means of detecting if signals go out of range,
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allowing the user to rescale the equations, shrinking their range, and resimulate the

system. This detection is important since a user may not be able to predict the

extremes of variables in the differential equation before the equation is simulated. To

guard against the variables going out of range, one could scale the equations so that

they remain very small. However, this is unwise since the signals will be closer to the

noise in the system, thereby decreasing the accuracy of the solution.

A more subtle form of scaling is needed when the variables in the equation

do not change significantly relative to their average value. For example, consider

the case for the same ODE, where the initial temperature is 9 C and the outside

temperature is 8.9 C. There is no need to scale the variables for them to fit within

the limits of the circuit. That is, the trivial ratio of 1
1

V
C

could map temperature to

voltage. However, the small change in x from 9 V to 8.9 V over the simulation time

might lead to inaccurate results since the noise of the circuits will be larger relative

to the 0.1 V change in x than it was for the 8 V change in the earlier example.

For linear systems, the solution can easily be split into a constant part and a

time-varying part, allowing the time-varying part to be expanded into a larger part

of the range of the circuits. That is: x = XDC +xvar where the subscript DC denotes

the constant part of the variable and var denotes the time-varying part. Likewise,

y = YDC + yvar and u = UDC + uvar. We can set YDC = XDC and yvar = xvar. The

differential equation becomes: ẋvar = 1
τ
(−xvar + uvar). XDC = YDC = UDC = 9 and

uvar(t) = −0.1 V. Now the time-varying parts of u, x, and y range from 0 to -0.1

C. A mapping of 90
1

V
C

can be used meaning that the electrical variable representing
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�
�x x y,u 1

τ

eoffset

Figure 2.2: Realization of a first-order, LTI ordinary differential equation. The inte-
grator has an input offset.

xvar will change by 9 V over the simulation and would be effected by noise to a much

lesser degree than when no scaling is done.

While this shifting in the variables is obvious and easy to do for simple linear

systems, it is much more difficult for nonlinear systems. Often, the shifting of variables

in nonlinear equations modifies the equations themselves beyond simply rewriting

them in terms of different variables.

In the example described by Eq. 2.9 and Eq. 2.10, when τ = 1800 s, the

amplifier in Fig. 2.1 has a gain of 1
τ

= 1
1800

= 5.55 × 10−4. This very low gain has

several consequences:

• It may be difficult to implement such a low gain.

• The output signal of the amplifier may be small relative to the amplifier’s output

noise or the integrator’s input noise.

• The signal applied to the input of the integrator may be very small relative to the

integrator’s input referred offset, leading to inaccurate results. This is because
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the y(t) that the analog computer computes will be the sum of the responses

of the system to u(t) and to eoffset(t) where eoffset(t) is the integrator’s input-

referred offset, depicted in Fig. 2.2. The DC gain from eoffset to y is τ , which

is much larger than from u, when τ is large.

• Implementing this system with τ = 1800 s means that the solution will be

changing with the same, very long time constant that the actual system (barrel

of water) has. The analog computer is not useful if it takes several hours to

solve this simple differential equation.

To address these issues, another scaling technique is performed, frequently

referred to as time scaling. Consider the system of equations in Eq. 2.7 and Eq. 2.8,

with solution y(t). Suppose a new set of equations, with the same set of functions for

f and g is defined:

ẋs = Kf(xs, us, t), where us(t) = u(Kt) (2.11)

ys = g(xs, us, t) (2.12)

It can be shown that ys(t) = y(Kt). That is, if the input signal to every integrator

in a system is multiplied by a gain of K, the solution to the new system is simply

a time-scaled version of the original system, provided the inputs are time-scaled by

the same factor. This property can be used to speed up a simulation, and to avoid

having very small inputs to the integrators. Another aspect of time scaling stems

from the fact that the integrators in analog computers usually do not implement the

transfer function 1
s
, but implement 1

τints
for some time constant, τint, typically much
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less than one second. While the term time constant normally refers to the parameter

τ in a function of the form e
−t
τ it will also be used to refer to the reciprocal of the

integrator’s scaling factor. That is:

ẏ =
1

τ
x (2.13)

where y is the output of the integrator and x is the input of the integrator. τ is the

time constant of the above integrator.

To time-scale a problem for simulation on an analog computer, one does the

following:

• Select a K to generate a new set of equations as shown in Eqs. 2.11 and 2.12. A

good choice would be one that, based on any knowledge of the system, leads to

inputs to integrators of comparable size to the outputs of the integrators. For

Eq. 2.10, the best choice for K, would be τ , thereby eliminating the amplifier

in Fig. 2.1. Now, ys(t) = y(Kt).

• Implement the scaled equations on the analog computer. When measuring

the solution from the analog computer, yAC , scale its time values by the time

constant of the analog computer’s integrators (τAC) in the following way: ys(t) =

yAC( t
τAC

). Since ys(t) = y(Kt), y(t) = ys(
t
K

) = yAC( t
KτAC

)

Solving Partial Differential Equations on an Analog Computer

In many physical phenomena, functions are defined in terms of more than one vari-

able (e.g., space and time). Frequently, rates of change are also specified for more
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than one variable, giving rise to partial differential equations (PDEs), which cannot

immediately be solved on an analog computer in the way that ODEs can be.

In general terms, this problem can be addressed by discretizing either space

or time. The latter approach, which leaves space a continuous variable, is called

continuous-space, discrete-time (CSDT) while the former is called discrete-space,

continuous-time (DSCT). DSCT will be described in more detail below, as it is the

technique used with the analog computer described in this thesis.

Method of Lines: In the DSCT technique, also known as the method of lines,

the spatial partial derivatives are approximated as finite differences, leaving a set of

coupled ODEs, which can be solved in the usual fashion on the analog computer.

Consider the following one-dimensional heat equation:

α
∂2T

∂x2
= Ṫ (2.14)

where T (x, t) is the temperature at a point x and time t along a uniform rod oriented

in the x direction. The coefficient α representing a physical property of the material

is given by: α = k
C
, where k is the material’s thermal conductivity and C is the

material’s specific heat capacity.

∂T
∂x

can be approximated by a difference in several ways, though for all, x is

discretized into a set of N points, namely x0, x1, x2...xN−1. The spacing between

discretization points may be variable or constant. We consider the constant case in

which xi − xi−1 = h. The following are three possibilities for the approximation:

∂T

∂x
|xi

=
Ti − Ti−1

h
(2.15)
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∂T

∂x
|xi

=
Ti+1 − Ti

h
(2.16)

∂T

∂x
|xi

=
Ti+1 − Ti−1

2h
(2.17)

Eq. 2.15 is referred to as Backward Euler, Eq. 2.16 is referred to as Forward Euler,

and Eq. 2.17 is referred to as Central Differences. To approximate the second partial

derivative in the heat equation, approximations must be applied twice. If Forward

Euler is used to approximate the first partial derivative, Backward Euler is typically

used to approximate the second partial derivative from the first, giving:

∂2T

∂x2
|xi

=
Ti+1 − 2Ti + Ti−1

h2
(2.18)

Alternatively, the second partial derivative can be approximated by applying the

Central Differences approximation twice, giving:

∂2T

∂x2
|xi

=
Ti+2 − 2Ti + Ti−2

4h2
(2.19)

These two approximations have different properties that relate to the accuracy of the

solution on an analog computer which will be discussed in Sect. 6.1. However, both

allow for the one-dimensional heat equation to be simulated on an analog computer

with N − 2 to N integrators, depending on the type of boundary conditions. Both

techniques can also be extended to PDEs of two and three dimensions in a similar

fashion. For a two-dimensional PDE with space discretized into an N × N grid,

approximately N2 integrators are needed.

The technique is called the method of lines because the problem which is

defined over the (x, t) plane is solved along lines parallel to one of the axes. In the
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DSCT technique, the solutions of the ODE are computed along lines in the (x, t)

plane spaced equally in x and parallel to the t axis. In the CSDT technique, the

solutions to the ODEs are computed along lines in the (x, t) plane equally spaced in

t and parallel to the x axis.

Method of Characteristics: In this technique, known as the method of

characteristics, expressions for different lines in the (x, t) plane are found which trace

level curves of the solution T (x, t). If the solution to the PDE at only one point in

the (x, t) plane is desired, it may be possible to integrate only along one curve from

an initial value, since these curves, for some PDEs, do not depend on one another

and can be integrated independently.

2.2.2 Strengths and Weaknesses of the Analog Approach

For the following discussion, an attempt has been made to note which deficiencies

can be, or already have been, mitigated in modern analog computers.

Accuracy: Analog computers are not very accurate. Solutions are usually

accurate to no better than 0.1 % - 1 %. These errors stem from the following:

• Thermal, flicker and shot noise.

• Nonlinear transfer characteristics of blocks that should be linear.

• Other deviations from the intended input-to-output transfer characteristics of

memoryless blocks. For example: imperfect multiplication of multipliers, finite

output resistance of current mode circuits, or offsets of variable gain amplifiers.
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• Finite DC gain of integrators.

• Input offsets of integrators.

• Finite bandwidth of memoryless blocks and non-dominant poles in the integra-

tors.

• Granularity in the setting of coefficients such as integrator time constants or

gains of variable gain amplifiers.

• Coupling between signal wires.

Dynamic Range: Dynamic range is a measure of the range of signals over

which accurate processing can be guaranteed. Due to noise in the analog circuits,

small signals become unduly corrupted by noise. Large signals are processed with

distortion. Generally speaking, analog computers have relatively poor dynamic range,

as compared to digital computers. The following VLSI techniques can be used to

improve the dynamic range of an analog computer, though not to the level of a

digital computer:

• Dynamic bias schemes to reduce the noise when signals are small, but also to

allow for large signals.

• Class-AB operation.

• Automatic offset cancellation schemes for integrators and other blocks.

Reconfigurability: Classical analog computers were hand-wired through the

plugging and unplugging of patch cords and by turning potentiometers to tune gains
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and time constants. This could take a significant amount of time for large systems,

and required significant user expertise. This problem does not apply to VLSI analog

computers, since programming operations can be controlled automatically by a digital

computer that sets the states of electronic switches to control the connectivity of the

blocks, and programs DACs that generate tuning signals to tune gains and time

constants.

If a user wished to use a function not within a classical analog computer system,

the block had to be constructed. However, in many instances, an approximation to

the function is sufficient and through the use of VLSI circuits, a large amount of

circuitry can be available to generate these approximations.

Requisite User Expertise: The scaling discussed in Sect. 2.2.1 normally

requires user expertise to perform. However, because the interface to a modern ana-

log computer is typically through a digital computer, much of the scaling can be

automated, reducing the level of expertise that is necessary.

Speed: The speed of an analog computer is largely determined by the nominal

time constant of the integrators and the interval over which a solution is desired,

and not by the complexity of the system being simulated. That is, doubling the

number of state variables in an ODE does not increase the simulation duration. While

some digital computers make use of parallelism, every analog computer is inherently

parallel.

Cost: Historically, analog computers tended to be costly owing to their large

number of parts and the significant mechanical assembly needed. Also, many would
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be tuned at the factory, requiring the time of a technician. VLSI circuits can be

inexpensive when manufactured in quantity and electronic assembly costs are low,

making this no longer a drawback of analog computation.

Aliasing and Stability: There are features inherent to analog computa-

tion since the actual continuous-time, continuous-valued equations whose solution

is sought are solved directly. Firstly, an analog computer will never settle to a

metastable equilibrium as a digital computer may and it is less likely to suffer from

non-convergence. Here, non-convergence refers to situations in which a solution ex-

ists, but the digital computer cannot find it. An example of this is the situation in

which Newton-Raphson iterations fail because the starting point for the iterations

was separated from the solution by local extremum. Secondly, because the system is

in continuous time, there can never be aliasing, nor can there ever be artifacts intro-

duced because time-derivatives in the differential equations are mapped to differences,

as is the case with a digital computer.

The output of a modern analog computer is usually sampled and read by a

digital computer. An anti-aliasing filter is needed at the input to the ADC. However,

the bandwidth of the signal can be estimated by the frequencies of input signals and

by the size of inputs to integrators.

Clearly, analog computation offers some advantages over digital computation

and vice versa. As such, an attempt has been made to combine them in a way that

best utilizes modern VLSI technology and best exploits their respective strengths.

This hybrid computer system is described in Chapter 4
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Chapter 3

Design of the VLSI Circuit

3.1 Chip Architecture

3.1.1 Overview

The VLSI analog computer (AC) that is the subject of this thesis is composed of 416

functional blocks, a large number of signal routing switches, memory that holds the

states of the switches, memory that holds programming data for the functional blocks,

and circuitry enabling the programming of the chip and the control of simulations

on the chip. Computational variables are represented by differential currents (i.e.

the circuits are current-in/current-out) and hence signals are added by connecting

multiple signals together. Cross-coupling of a differential signal allows it to be inverted

or subtracted from another signal. The chip contains the following circuits:

• 80 integrators.
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• 80 variable-gain amplifiers (VGAs) / 2-input multipliers.

• 160 fanout blocks. The purpose of these blocks is noted below.

• 16 logarithms.

• 16 exponentials.

• 64 programmable nonlinear circuits.

Each programmable nonlinear circuit can be used individually to implement:

• Sign.

• Absolute value.

• Saturation.

• A programmable function that serves as a building block for generating piece-

wise linear functions.

When two programmable nonlinear blocks are used together, the pair can

implement:

• Minimum.

• Maximum.

• Greater than.

• Less than.
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• Track.

• Track and hold.

• Sample and hold.

The chip contains 160 blocks (fanout blocks) that allow a signal to be fanned

out to up to three other blocks, necessitated by the chip being current-mode.

Macroblock

Figure 3.1: Architecture of the VLSI analog computer with expanded view of one
Macroblock.

The circuits are divided into a 4 x 4 array of identical macroblocks (MBs).

Fig. 3.1 shows the architecture of the chip with an expanded view of one MB.

Fig. 3.2 shows a detailed view of one Macroblock. Each block’s input is con-

nected to a wire running horizontally and each block’s output is connected to a wire

running vertically. These wires extend outside of the MB to allow for the connection
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Functional blocks’ outputs
Closed switch

Functional blocks’ inputs

Nonlinear

Integrators

VGAs/Mult

Fanouts
X

Y

log & exp

Figure 3.2: Architecture of one Macroblock within the analog computer.

between blocks in different MBs. For simplicity each block is shown with one input

and one output though some blocks have more than one input or output. Each wire

represents a pair of wires, carrying a differential current. There is an array of CMOS

pass-transistor switches and SRAM that holds their states wherever two groups of

wires cross one another. The switches can be closed to connect horizontal and vertical

wires. The solid, bold line (within the expanded MB) shows how the output of block

X is routed to the input of block Y.

Fig. 3.3 shows the interconnection of the Macroblocks with one another and

off-chip. To route a block’s output to the input of a block not in the same MB, shared,

global wires are used. The dotted, bold line shows how the output of a block in MB
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Functional blocks’ inputs

B

A

Functional blocks’ outputs

Multiplexers

Demultiplexers

Inputs from off−chip

Z

Outputs to off−chip

W

Figure 3.3: Architecture of the VLSI analog computer showing top-level connections.

W is routed to the input of a block in MB Z. Sixty-four analog signal inputs enter the

interconnection network at the top and bottom of the chip through 1:2 demultiplexers

depicted in Fig. 3.3. The solid line in Fig. 3.3 shows how a signal from off-chip can

be applied to the input of a block within Macroblock B. Likewise, on-chip signals

applied to the horizontal wires can be routed off-chip through multiplexers on the left

and right sides of the chip, for a total of 64 outputs. The bold, dashed/dotted line

connected to Macroblock A shows how an output signal from within Macroblock A
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is routed to off-chip.

3.2 Process Details

The chip was designed and fabricated in a 0.25 µm CMOS process from the Taiwan

Semiconductor Manufacturing Corporation (TSMC). The process features thin-oxide

devices for a 2.5 V VDD and thick-oxide devices, capable of tolerating 3.3 V but with

minimum lengths of 0.3 µm and 0.35 µm for the PMOS and NMOS devices, respec-

tively. The process allows for polysilicon resistors, metal-insulator-metal capacitors

of about 1 fF/µm2 and has a non-epitaxial substrate. It is a single polysilicon, five-

metal process with minimum metal line widths ranging from 0.32 µm for Metal-1 to

0.44 µm for Metal-5 and similar minimum line spacings.

3.3 Block Circuit Design

3.3.1 Elements Common to Most Circuits

All circuits have class-A inputs and outputs, with the exception of the logarithm

circuits, which have class-AB inputs and the exponential circuits, which have class-

AB output circuits. To accommodate larger dynamic range, most class-A signal ports

have 100 nA, 1 µA, and 20 µA signal ranges. For some ports, the largest signal range

is 10 µA.

Circuits in analog computation are used in a wide variety of configurations
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and as such, it is difficult to predict how the performance of one circuit will effect

the overall accuracy of the system being simulated. While one could respond to

this by designing circuits to meet extremely high performance standards, the usual

costs would be incurred, namely increased design time, complexity, area and power

consumption. Instead, some moderate performance targets were set such that all

nonidealities affect the instantaneous accuracy of a block equally. For example the

integrated equivalent input noise specification was set to be the same, as a percent of

full-scale signal, as the nonlinear distortion. The targets are summarized below:

• Integrated equivalent input noise up to 1 MHz: 0.1 % of full scale.

• Maximum deviation from linearity for linear blocks: 0.1 % at half of full scale.

• Non-dominant pole location > 1 MHz.

• Matching of critical pairs of transistors: σIDS

IDS
= 0.1%.

• Output resistance: > 1000 x input resistance. Recall that the blocks are current-

in, current-out.

• Quiescent input voltage: 1.25 V to 1.8 V.

3.3.2 Integrator

A block diagram of the integrator is shown in Fig. 3.4. Wire labels follow the following

convention: a label adjacent to a part of wire on which an arrow is superimposed refers

to the current flowing in the wire. Labels not adjacent to arrows denote the voltage
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Figure 3.4: Block diagram of the integrator.

of the wire with respect to ground. Signals iin+ and iin− form the circuit’s class-A

differential input. Signals iout+ and iout− form the circuit’s class-A differential output.

The integration operation is performed by the block labeled “Integrator Core”. The

wires labeled “iin1+ + 1µA”, “iin2+ + 1µA”, “iin1− + 1µA” and “iin2− + 1µA” apply

class-A analog input signals to the core, along with 1 µA biases. The integrator core,

as we will derive below, has the following input-output characteristic:

d

dt
(ioutc+ − ioutc−) = K (iin1+ + iin2+ − iin1− − iin2−) (3.1)

where K equal to half of the unity gain angular frequency of the integrator.
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The blocks labeled “A:B” are single-input, dual-output current mirrors with

programmable gains, having the following input-output characteristics in terms of the

signals labeled in Fig. 3.4:

iin1+ = iin2+ = −B

A
iin− (3.2)

and

iin1− = iin2− = −B

A
iin+ (3.3)

Along with composite devices COMP1 through COMP5, “A:B” blocks allow

the integrator to have multiple input signal ranges, while always supplying each of the

core’s inputs with a bias of 1 µA. The blocks labeled “B:A” are single-input, single-

output current mirrors with programmable gains, having the following input-output

characteristics in terms of the signals labeled in Fig. 3.4:

iout+ =
A

B
ioutc+ (3.4)

and

iout− =
A

B
ioutc− (3.5)

The core of the integrator, through wires “ioutc+ + 1µA” and “ioutc− + 1µA”

applies signals and bias to the output mirrors, which allow for three different output

signal ranges. Input and output mirrors are adjusted so that the input signal limit

is equal to the output signal limit. This gives rise to the following input-output

characteristic for the whole integrator:

d

dt
(iout+ − iout−) = 2K (iin+ − iin−) (3.6)
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While an open loop integrator does not, strictly speaking, have a time constant,

for the purpose of this thesis, the term “time constant” will refer to the time constant

that the integrator would have if it were placed in unity-gain negative feedback. If

the open loop integrator has a transfer function of H(s) = 1
τs

, the closed loop system

will have a time constant of τ . For open loop integrators, the term time constant will

refer to this τ . It is seen that τ is the inverse of the unity-gain angular frequency of

the integrator.

The time constant of the integrator in Fig. 3.4 is dependent on the two copies

of the tuning current ITUNE which are generated by the block labeled “10-bit DAC”.

The block OVFL raises the digital signal OVFL when the integrator’s differential

output signal is near its limit. The block labeled CMFB regulates the common mode

level of the integrator’s differential output current. The two blocks labeled “Offset

Cancellation” perform dynamic cancellation of the integrator’s input and output off-

sets. The block labeled Memory stores the DAC’s input word, range settings, and

other control data.

Control signal VCAP helps reset the integrator. SIN controls the offset cancel-

lation sequence. The signals data[0:15] specify the data to be programmed to the

block’s memory. The signal address[0] latches the data into the block if the address

lines, address[1:5] are all high. A particular block is identified by the address lines in

the following way:

• Around the chip run five address signals (a[1:5]) and their complements (a[1 : 5]).
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• The ith address input of the Memory block is connected to either a[i] or a[i].

• The particular block is activated whenever all of its five address inputs are high.

For example, if the five address lines of a block are connected to a[1:2], a[3 : 4] and

a[5], its memory is activated when a[1:5]=11001.

Integrator Core

Vdd Vdd

VBIAS

Vdd Vdd

C C

VBIAS VBIAS

VBIAS

VBIAS

vCAP

VBIAS

iin1+

M1 M2

M3M4

M6M5 M7 M8 M9 M10

M11 M12

M13

M14

M15 M16
M17

M18

M19 M20 M21 M22

ioutc+

M24 M23

iin2+

iin1-

iin2-

ITUNE ioutc-ITUNE

+ 1uA

+ 1uA

+ 1uA + 1uA

+ 1uA+ 1uA

Differential to single-ended integrators

VC

+
-

Figure 3.5: Integrator Core.

The schematic of the core of the integrator is shown in Fig. 3.5. It consists

of two differential to single-ended log-domain integrators using MOSFETs, similar to

those in [16]. Log-domain integrators were selected in an attempt to reuse as much of

an earlier design as possible. An earlier, smaller, version of the chip used log-domain

integrators without range-selecting input and output mirrors (blocks A:B and B:A),

requiring that they operate over a wide range of bias currents. The externally-linear,
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internally-nonlinear behaviour of log-domain integrators makes them well suited to

such an application. If a log-domain integrator is made with bipolar junction tran-

sistors, its usable range (linear, and not overly noisy) can be over many decades of

bias current. However, when MOSFETs are used, the upper range of current must

be kept small enough that the devices stay weakly inverted. Reducing the current

too much leads to a poor maximum signal-to-noise ratio, since the signal range falls

faster than the noise level does as the circuit’s bias currents are reduced. When the

integrator for the chip described in this thesis was designed, the log-domain core was

kept, but the range-selectable mirrors were added. It was simpler to design them

than an integrator that could handle the full signal range.

Circuit Operation: The core consists of two differential to single-ended in-

tegrators found in the right and left halves of Fig. 3.5. Transistors M1 through M12

operate in weak inversion. Transistors M13 through M18 keep the impedance low at

the drain of M1, M3, M6, M7, M10 and M11, respectively, allowing the input and

tuning currents to enter the circuit at a low-impedance point. The transistor pairs

M19/M20 and M21/M22 form unity-gain current mirrors. We will perform an analy-

sis of the lefthand differential to single-ended integrator consisting of transistors M1

through M6, M13 through M15, M19, and M20 and the capacitor C on the left side

of the figure. This analysis assumes:

• VCAP is low, shutting off M24.

• All other transistors in the integrator are in saturation.



38

• Output conductances of transistors are zero.

• The body effect can be ignored.

• All parasitic capacitances and device capacitances can be ignored.

• The following pairs of transistors are identical to one another: M1 and M6; M2

and M5; M19 and M20;

• Transistors M1 through M6 are weakly inverted and each drain-source current

is described by [17]:

iDS = SIS exp(
vGS

nφt

) (3.7)

Where S is the device’s aspect ratio (i.e. W
L

), IS is a constant of proportionality with

units of current, vGS is the device’s gate to source voltage, n is the subthreshold slope

factor for the device and φt is the thermal voltage (kT/q). Eq. 3.7 can be rearranged

to give:

vGS = nφt log(
iDS

SIS

) (3.8)

A loop in a circuit composed of only gate-source voltage drops of weakly in-

verted MOSFETs (or BJTs) is called a translinear loop. The analysis of this circuit

will proceed in a fashion very similar to that of other translinear circuits [18].

There are two translinear loops in the circuit, which are composed of: M1, M2,

M3 and M4; and M6, M5, M3 and M4. Even though each of these loops starts and

ends with a different element, they form electrical loops since the gates of the start

and end devices are connected to the same voltage. Around each loop a Kirchoff’s
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Voltage Law (KVL) equation can be written:

vGS1 − vGS2 + vGS3 − vGS4 = 0 (3.9)

vGS6 − vGS5 + vGS3 − vGS4 = 0 (3.10)

When Eq. 3.8 is substituted for each of the gate-source voltages in Eq. 3.9 and

Eq. 3.10, the KVL equations become:

nφt log(
iDS1

S1IS

)− nφt log(
iDS2

S2IS

) + nφt log(
iDS3

S3IS

)− nφt log(
iDS4

S4IS

) = 0 (3.11)

nφt log(
iDS6

S6IS

)− nφt log(
iDS5

S5IS

) + nφt log(
iDS3

S3IS

)− nφt log(
iDS4

S4IS

) = 0 (3.12)

Eq. 3.11 and Eq. 3.12 can be manipulated into the following form:

iDS1iDS3

S1S3

=
iDS2iDS4

S2S4

(3.13)

iDS6iDS3

S6S3

=
iDS5iDS4

S5S4

(3.14)

Eq. 3.13 and Eq. 3.14 will be used later. For now, consider the Kirchoff’s Current

Law (KCL) equation written at the top terminal of the capacitor:

iC = −iDS19 − iDS2 (3.15)

Since M19 is a PMOS device, its drain current is defined upward from its drain to

VDD. Because M19 and M20 are identical, they act as a unity-gain mirror, mirroring

the drain current of M5 into the capacitor. Therefore M19 conducts the same current

as M5.

iDS19 = −iDS5 (3.16)
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Substituting Eq. 3.16 into Eq. 3.15 gives:

iC = iDS5 − iDS2 (3.17)

The output of the integrator’s core is iDS4. Since the circuit is an integrator,

we are interested in an expression for the time derivative of the output variable. The

time derivative of Eq. 3.7 for M4 gives:

i̇DS4 = S4IS exp(
vGS4

nφt

)
V̇G4 − v̇S4

nφt

(3.18)

Where VG4 is the voltage at the gate of M4, with respect to ground, and, vS4 is the

voltage at the source of M4, with respect to ground. Recognizing that the first part

of the right-hand side is simply iDS4, and that V̇G4 is zero, since the gate of M4 is

connected to a DC voltage source, Eq. 3.18 becomes:

i̇DS4 = − v̇S4

nφt

iDS4 (3.19)

Note that vS4 and vS3 are equal to one another. Since iDS3 is kept constant by ITUNE,

VGS3 is also a constant. Also, because the gate of M3 is connected to one terminal of

the capacitor, the rate of change of vG3 will be the same as the rate of change of the

capacitor’s voltage. These facts combine to give:

v̇S4 = v̇G3 = v̇C =
1

C
iC (3.20)

Substituting Eq. 3.17 into Eq. 3.20 and combining this result with Eq. 3.19

gives:

i̇DS4 =
1

nφtC
iDS4(iDS2 − iDS5) (3.21)
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Now we rearrange Eq. 3.13 and Eq. 3.14 and isolate iDS2 and iDS5, respectively giving:

iDS2 =
iDS1IDS3S2S4

iDS4S1S3

(3.22)

iDS5 =
iDS6IDS3S5S4

iDS4S6S3

(3.23)

Eq. 3.22 and Eq. 3.23 can be substituted into Eq. 3.21 to give:

i̇DS4 =
1

nφtC
iDS4(

iDS1IDS3S2S4

iDS4S1S3

− iDS6IDS3S5S4

iDS4S6S3

) (3.24)

Simplifying and noting that S2 = S5 and S1 = S6, Eq. 3.24 becomes:

i̇DS4 =
S2S4

S1S3

IDS3

nφtC
(iDS1 − iDS6) (3.25)

This equation describes the behaviour of the circuit in terms of total drain-source

currents and not the signal quantities labeled in Fig. 3.5. Eq. 3.25 can be cast in

terms of signal quantities by noting the following:

iDS1 = iin1+ + 1µA (3.26)

iDS6 = iin1− + 1µA (3.27)

iDS4 = ioutc+ + 1µA (3.28)

and therefore:

i̇DS4 = i̇outc+ (3.29)

When Eq. 3.26, Eq. 3.27, and Eq. 3.29 are substituted into Eq. 3.25, we get:

i̇outc+ =
S2S4

S1S3

ITUNE

nφtC
(iin1+ − iin1−) (3.30)
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In Eq. 3.30 ITUNE has replaced IDS3. It can thus be seen that we have a differential

input, single-ended output integrator whose time constant can be tuned through

ITUNE.

A similar analysis can be carried out for the right-hand integrator, which can

be combined with Eq. 3.30 assuming that the following sets of transistors are identical

to one another: M1, M6, M7 and M10; M2, M5, M8 and M9; M19 and M20; M21

and M22; M4 and M12; M3 and M11; giving:

i̇outc− =
S2S4

S1S3

ITUNE

nφtC
(iin2− − iin2+) (3.31)

Eq. 3.30 and Eq. 3.31 can be combined to give:

d

dt
(ioutc+ − ioutc−) =

ITUNES2S4

nφtCS1S3

(iin1+ + iin2+ − iin1− − iin2−) (3.32)

Eq. 3.32 will be related to the behaviour of the entire integrator once the

operation of the blocks labeled “A:B” and “B:A” in Fig. 3.4 is described. Eq. 3.32 is

not to suggest that the circuit, as described thus far, is fully differential. Rather, it

is pseudo-differential.

Transistor M24 allows the capacitors to be pre-charged to VBIAS. This hastens

resetting the integrator, and ensures that transistors M2, M5, M19, and M20 become

biased properly. Without M24 a combination of DC voltages may make it impossible

for the integrator to reach a state in which the operation described above applies.

For example, if vC = 0 and the drain voltage of M5, vD5, is at VDD, transistors M2,

M5, M19 and M20 are all off and regardless of the current flowing in M1 and M6,

the capacitor will stay discharged. This does not contradict the analysis above, since
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the analysis assumed that transistors M2, M5, M19 and M20 are each on and in

saturation.

The integrators have a nominal time constant of 40 µs. Each integration capac-
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Figure 3.6: Simple system for noise analysis.

itor is implemented as an 8 by 10 array of NMOS transistors (W = 10µm, L = 10µm)

giving a net capacitance of 40 pF. The capacitors of an integrator occupy 25 % of the

area of the integrator, despite efforts to shrink the capacitor without changing the

nominal time constant. From Eq. 3.32 it is clear that reducing S2 (and the aspect

ratios of M5, M8 and M9 since M2, M5, M8 and M9 are assumed to be identical)

proportionately with C keeps the capacitor area small without changing the transfer

characteristics of the integrator. In this design S2, S5, S8 and S9 are 2.5 % of the

aspect ratio of the other transistors in the translinear loops. This also reduces the

current through M2, M5, M8 and M9 and increases their contributions to the inte-
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grator’s output noise. How exactly this affects the noise of a given simulation is very

dependent on the details of the system, even for very small systems. For example,

consider the system shown in Fig. 3.6. Assume signals ni(t) and no(t) are uncorre-

lated noise sources with flat power spectral densities, Ni(f) = Ni and No(f) = No,

respectively. Here, ni represents all noise sources in the integrator on the input side of

the integration capacitor and no represents all noise sources on the output side of the

integration capacitor. Despite the integrator being an internally nonlinear system,

the noise analysis below assumes that the system is linear, which is a valid assumption

when the signal the integrator is processing (input and output) is small. The noise

at the output, Nt(f), will be:

Nt(f) = Ni|HLP (f)|2 + No|HHP (f)|2 (3.33)

where

HLP (f) =
1

j2πf + g
(3.34)

HHP (f) =
j2πf

j2πf + g
(3.35)

HLP (f) is the transfer function of this system from the input of the integrator

to the output of the system, whether the input is noise at the input of the integrator

or an input signal to the system. HHP (f) is the transfer function from the output

of the integrator to the output of the system. This noise analysis assumes that the

gain block g is noiseless. Clearly, the relative contribution of input noise to the total

noise is dependent on g, a parameter of the system being simulated. As such, the

optimal allocation of the circuit’s noise is dependent on the system being simulated.
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The quartet of devices M2, M5, M8 and M9, the dominant source of input noise,

were sized such that they contributed approximately half of the core’s noise when

the integrator was in the configuration discussed here, with g = 1, and the noise was

integrated up to 1 MHz.

Settable-Gain Input and Output Mirrors
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Figure 3.7: Input variable gain current mirror.

The core of the integrator uses weakly inverted MOSFETs whose relationship

between gate to source voltage (VGS) and drain current (IDS) is exponential. It is

this characteristic that makes the core externally linear. However, for larger drain
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currents, the devices become moderately inverted and their current-voltage charac-

teristics are no longer exponential. One could make the devices wider, extending the

current up to which the exponential relationship is maintained. However, this would

be at the penalty of circuit area, since all capacitances would increase. Alterna-

tively, the length of the active devices could be decreased as their width is increased,

maintaining a fixed area. This would reduce their output resistance and their expo-

nential characteristics would be limited by short channel effects. Instead, to allow for

a larger range of input and output current, settable-gain input and output current

mirrors were used (labeled A:B and B:A, respectively, in Fig. 3.4). Fig. 3.7 shows a

simplified schematic of the input mirror. The numbers above the dashed boxes in the

figure indicate the number of unit devices of which each transistor is composed.

Each input mirror has one analog input current and two equal output currents

so that each polarity of the integrator’s input can be applied to each of the core’s two

differential to single-ended halves (Fig. 3.4). The input mirror consists of mirroring

devices M1 to M6, input current-steering devices M7-M12, output current-steering

devices M13-M18, a unity-gain buffer amplifier (M19-M24 and SBIAS1 through SBIAS4),

a by-pass to the amplifier (SAMP), some devices for compensation (SCAP and M27),

and some control logic. By appropriately controlling the gates of M7-M18 (unit size is

W = 1 µm, L = 0.3 µm), the circuit achieves mirroring ratios of 20:1, 1:1, 1:10 from

input to each of its two outputs. Device M10, since its gate is connected to VDD,

never conducts. It is included so that the capacitive loading at the drain of M4 is the

same as the loading at the drain of M1. The input bias to the mirror is adjusted (20
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µA, 1 µA, 100 nA) so that the output bias is always 1 µA. Table 3.1 details how the

current steering transistors M7-M18 are controlled.

Mirror Ratio M1 M2 M3 M4 M5 M6

20:1 M13 M8 M9 M16 M11 M12

1:1 – M8 M15 – M17 –

1:10 M7 M14 M15 – M17 M18

Table 3.1: Control for current steering switches in the integrator’s variable-gain input
current mirror. Rows two through four indicate the conducting device connected to
the device in row one.

Each device listed in the first row of the table above is connected to two current

steering devices. The devices listed in rows 2 through 4 indicate which of the two

current steering devices associated with the device in the first row is on. The entry

“–” denotes that neither current steering device is on. What precisely is meant by

“ON” is explained below. For the moment, it can be assumed that the current-

steering devices act as switches. The scenario in which the circuit implements a

current mirroring ratio of 20:1 is depicted in Fig. 3.8. Transistors draw with a bold

line are conducting while the others are not. M13 is on thereby connecting M1 to

the output terminal iOUT1. M2, M3, M5 and M6 are connected to the input iIN for

a total of 20 unit devices, while M4 is connected to iOUT2. This means that there

is one unit device supplying current to each output. M1 through M6 have the same

gate-source voltage. Assuming that they are in saturation, the connections described

above will lead to a mirroring ratio of 20:1.

The block labeled “Control Logic” takes a two-bit signal, r, as its input and
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Figure 3.8: Input variable gain current mirror implementing 20:1 mirror ration. De-
vices drawn in bold are on.

generates the necessary control signals for the switches SBIAS1 through SBIAS4, SCAP

and SAMP, and the gates of the current steering transistors.

The simplest way to operate the mirror would have been to directly connect

the input (iIN) to the gates and drains of M1-M6. This, however, would load the

input with a large capacitance (∼ 11 pF), since the unit transistor of M1-M6 is large

(W = 10 µm, L = 10 µm). When put in parallel with the circuit’s input resistance,

the circuit’s frequency response would suffer. The input resistance of the circuit is

1/gm where gm is the transconductance of the subset of transistors M1 to M6 that is
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connected to the input. For the mirroring ratio of 1:10, the input current, and gm, is

the smallest and the input resistance is largest. This combination of input capacitance

and input resistance would result in a pole in the mirror’s frequency response near

40 kHz.

To prevent the gate capacitance of the mirror’s large devices (M1-M6) from

limiting the bandwidth of the input mirror when the input resistance is high, the

input is not connected directly to the gates of M1-M6. For the 100 nA and 1 µA

ranges, switches SBIAS1 and SBIAS4 are on, switches SAMP, SBIAS2 and SBIAS3 are off,

and M19-M24 form a unity-gain buffer from the voltage at iIN to the gates of M1-M6.

Mismatch between M22 and M23 will cause the buffer to have an input offset and

affect the input voltage of the mirror, but will not change the mirroring ratio. Since

matching between M22 and M23 is relatively unimportant these devices can be made

much smaller than M1-M6 and therefore do not load the input. When the input is

shielded from M1-M6, the input is still loaded with a capacitor. This comes from the

wire that connects the input of the block to the switching grids, typically ∼2 pF. The

feedback loop, from the input, through M22, M23, M2, and M8 can be unstable on

the 1 µA range, unless SCAP connects a small compensation capacitor (M27, 0.4 pF)

to the input. For the largest input range, SBIAS1 and SBIAS4 are off, switches SAMP,

SBIAS2 and SBIAS3 are on. This switches off the buffer, creating a simple current

mirror. SCAP is off.

The unit device is large enough so as to ensure good matching. For devices

that are weakly inverted, the relative standard deviation in current for two equally
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biased devices, considering only threshold voltage mismatch is given by [19]:

∆IDS

IDS

=
AVT

nφt

√
WL

(3.36)

where AVT
is a process dependent constant, usually quoted in [mV/µm] and W and

L are the dimensions of the transistor in [µm]. For the TSMC025 process AVT
'

5mV/µm and nφt = 40 mV, meaning that devices that are 100 µm2 in gate area

match to about 1 %. When set to the 20:1 range, the mirror’s matching of iOUT1 and

iOUT2 to one another relies on the matching of single unit devices, which are 100 µm2

in area.

The gate voltages of M7, M8, M9, M11 and M12 are raised to VDD to shut

the devices off or lowered to gnd to allow them to connect the mirroring devices to

the input. Similarly, the gate voltages of M13-M18 are raised to VDD to turn them

off, but when they are connecting the mirroring devices to the output, the gates are

lowered to only VDD/2. This creates cascode pairs of devices and increases the output

resistance of the circuit.

The output mirror circuits labeled “B:A” are similar to that in Fig. 3.7 with

the following differences:

• The output mirrors implement ratios 1:20, 1:1, 10:1.

• The output mirrors have a fixed input bias of 1 µA.

• Each output mirror has only one output.

For convenience, the equation describing the input-output behaviour of the integra-
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tor’s core is repeated below:

d

dt
(ioutc+ − ioutc−) =

ITUNES2S4

nφtCS1S3

(iin1+ + iin2+ − iin1− − iin2−) (3.37)

Recall that the input and output mirrors are adjusted so that their mirroring ratios

are the reciprocals of one another. For example, when the input mirrors are set to

have the ratio of 20:1, the output mirrors have the ratio 1:20. If “A:B” is the mirroring

ratio of the input mirrors, iin1+ = iin2+ = −B
A
iin− and iin1− = iin2− = −B

A
iin+. If

“B:A” is the mirroring ratio of the output mirrors, iout+ = A
B

ioutc+ and iout− = A
B

ioutc−.

When these relationships are substituted into Eq. 3.37, the input-output behaviour

of the integrator is found to be:

d

dt
(iout+ − iout−) = 2

ITUNES2S4

nφtCS1S3

(iin+ − iin−) (3.38)

Composite Devices

Composite devices COMP1 through COMP5 in Fig. 3.4 each have nine long channel

devices (W = 1 µm, L = 20 µm) and several short channel devices used as switches.

Switches connect the long devices in a 1 by 9, a 3 by 3, or a 9 by 1 array of transistors

depending on the levels of digital control signals. Fig. 3.9 shows the three configura-

tions without switches. Fig. 3.10 shows a detailed schematic of the composite device.

The circuit’s short channel devices are depicted by switches. Transistors M1 through

M9 are long channel devices. The label adjacent to each switch indicates the signal

that controls the switch. When the signal is high, the switch is closed. Table 3.2

shows the switch control signals that correspond to each configuration.
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Figure 3.9: Composite device. The Composite device on the left can implement the
three configurations of nine devices shown in the figure.

This scheme yields devices of equivalent size (W = 1 µm, L = 180 µm),

(W = 3 µm, L = 60 µm) and (W = 9 µm, L = 20 µm), used to carry currents

of 100 nA, 1 µA and 20 µA, respectively. While the currents are not exactly pro-

portional to the aspect ratio of the composite device, the level of inversion of the

equivalent device changes by only 2.5 while the current changes by 200. This scheme

allows for the following:

• Constant WL product, leading to constant ∆VT mismatch between arrays.
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Figure 3.10: Composite device. Switches are drawn in the place of MOSFETs.

• Efficient use of area, since every device is being used at all times.

• Nearly constant VDSSAT . VDSSAT would be constant if the aspect ratio changed

proportionally with current.

The net device is large (WL = 180 µm2) so that one composite device matches

a nearby one well.
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Equivalent size A A36 B B36

W = 1 µm. L = 180 µm high high low low

W = 3 µm. L = 60 µm high low low high

W = 9 µm. L = 20 µm low low high high

Table 3.2: Control signal levels for each configuration of a composite device.

Common-mode Feedback

An integrator with differential outputs needs common-mode feedback, because its

inputs only affect the differential output of the circuit. Without common-mode feed-

back the integrator, regardless of the differential-mode feedback around it, operates

in common-mode open loop. Due to the unavoidable offsets of an integrator, its

common-mode output will saturate causing it to no longer process differential signals

correctly and it will saturate the input of the circuit to which it is connected.

The common-mode feedback system (enclosed in a dashed line) along with the

core of the integrator (enclosed in the box drawn with a dotted line) is shown in

Fig. 3.11. The common-mode feedback system operates as follows:

• M4-cmfb, M-12-cmfb. These devices copy the output current of each side of the

core of the integrator, assuming they are in saturation, since the gate and source

voltages of M4-cmfb and M12-cmfb are the same as M4 and M12, respectively.

• MCM1, MCM2, MCM3. These devices compute the common output, and sub-

tract it from the input to the core. The drains of M4-cmfb and M12-cmfb are

connected together, thereby summing their drain currents. This sum is twice
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Figure 3.11: Common-mode feedback scheme.

the common mode output of the integrator. Diode connected MCM1 mirrors

this sum to MCM2 and MCM3 scaled by a factor of 1
2
. The difference between

the mirrored currents and the current sources is applied to two of the core’s

four inputs in such a way as to cause the common-mode output to approach

the current of the current sources, which each conduct 1 µA.

Transistors M4-cmfb and M12-cmfb do not alter the operation of the core of

the integrator as derived earlier. The operation was derived by writing a series of

KVL equations and KCL equations, none of which assumed that the drain-to-source

currents of M3, M4 and M14 summed to zero. The current through output device

M4 is determined by its source voltage, since its gain is connected to a fixed voltage.
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The source voltage is determined by the tuning current ITUNE flowing through M3

and the voltage across the capacitor. Connecting M4-cmfb does not alter the M4’s

source voltage.

This common-mode feedback scheme puts the common-mode output in unity-

gain, negative feedback. If the integrator had infinite DC gain (i.e., it is an ideal inte-

grator) the error between the actual common-mode output and the desired common-

mode output would be driven to zero in steady state by the integration operation.

However, since the real integrators have finite DC gain, the error between the actual

common-mode output of the integrator and the desired common-mode output (1 µA)

will not be driven to zero.

It is imperative that common-mode feedback is implemented as above rather

than by generating two copies of each output (by using two devices similar to M4-

cmfb for each output), generating two sums, and mirroring one sum to M6 and the

other to M7. The unavoidable mismatches between the two feedback paths will result

in common mode instability, and an ineffective common-mode feedback scheme.

Offset Cancellation

The integrator has two modes of operation. In one, its input offset is dynamically

cancelled before a simulation is run while in the other, no such cancellation takes

place.

Fig. 3.12 shows a simplified block diagram of the integrator with an expanded

view of the offset cancellation circuitry. In the mode in which no offset cancellation
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Figure 3.12: Block diagram of the integrator highlighting offset cancellation circuitry.

takes place, signal inf mode is high (VDD) and signal SIN is low (gnd). The signal

inf mode is short for “infinity mode”, indicating that the integrator could operate

in this mode indefinitely, while in the other mode, due to the dynamic nature of

the offset cancellation scheme, the integrator can operate properly for a finite time.

Raising inf mode and lowering SIN connects the gates of composite devices COMP1

through COMP4 to the bias voltage (VB) generated by the diode-connected COMP5.

There is no limit to the duration over which integrators in this mode can be operated,

however, due to mismatch, the integrator will have an input offset.

To cancel the offset dynamically, the output of the integrator is not connected

to any other circuits, inf mode is lowered to ground and SIN is raised to VDD (see
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Fig. 3.12). This connects the integrator in unity-gain, negative feedback. To see how

this configuration puts the integrator in negative feedback, consider the following

argument: Assume that with iin+ and iin− equal to zero, the integrator has reached

equilibrium. This assumption requires that the integrator is not in positive feedback.

We will see that in fact the integrator is in negative feedback, making this assumption

valid. Assume that iin− decreases by some ∆i. That is, more current is pulled from

the lower A:B block. Therefore, iin1+ and iin2+ increase by B
A
∆i. This decreases

ioutc−, as predicted by Eq. 3.37. Since the output of the integrator is not connected to

another circuit during offset cancellation, the current flowing into COMP4 decreases,

thereby decreasing vGO−. Since the gate of COMP2 is connected to the gate of

COMP4 through M3, vGI− also decreases. This reduces the current COMP2 conducts,

reducing the current that is pulled from block A:B, and hence reducing the effect of

the disturbance at the input. Because the system responds to reduce the effect of an

input disturbance, the system is in negative feedback.

The above sequence ignored what happened to ioutc+ and the feedback through

the Offset Cancellation block in the upper portion of Fig. 3.12. Imagine that the

decrease in iin− is accompanied by an equal increase in iin+, thereby making the input

disturbance differential. Similar reasoning shows that the upper feedback network will

tend to compensate for the increase in iin+. Also, the integrator’s response to the

increase in iin+ will reduce the effect of the decrease in iin− and vice versa. In fact,

the offset cancellation scheme only responds to the differential component of input

disturbances. The common mode component of input disturbances is rejected by the
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differential structure of the integrator cores.

The discussion above of the system’s response to an input when the system

is connected in feedback is relevant to the discussion of the system’s response to an

input referred offset because an integrator with an offset is accurately modeled as

an ideal system with an input. When the system reaches steady-state, the necessary

input to cancel the offset will be applied by COMP1 and COMP2. To store this input,

SIN is lowered, and the voltage needed to apply this input is held on CHold1, CHold2

and the capacitors inside the upper offset cancellation block, ignoring some nonideal

behavior discussed below. This procedure also cancels the integrators’s output offset.

That is, when the process is finished, the outputs (iout+ and iout− in Fig. 3.12) of the

integrator will be zero.

While this procedure should exactly cancel the integrator’s offsets, it does not

because the charge on CHold1 and CHold2 is changed as SIN is lowered by charge

injection from M3’s and M4’s channel charge and by capacitance division between

Cgd of M3 and M4 and the hold capacitors. To alleviate these problems dummy

switches (MD3 and MD4), connected to an inverted version of SIN , are connected to

the nodes vGI− and vGO− in Fig. 3.12.

If this procedure is done when other blocks’ outputs (except for other integra-

tors) are applied to the input of the integrator, the output offsets of those blocks are

also canceled. For example, suppose that the output of an amplifier is connected to

the input of the integrator. If the system had no offset cancellation ability, the output

offset of the amplifier would degrade the simulation in the same way, and to the same
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extent that the input offset of the integrator would. However, if the output of the

amplifier is connected to the input of the integrator when the cancellation scheme

is executed, the output offset of the amplifier is nulled in the same fashion that any

other disturbance at the input of the integrator is.

Because charge is stored dynamically, charge will leak, changing the voltage on

CHold1 and CHold2 and the performance of the integrator will deteriorate. However,

since the leakage from CHold1 and CHold2 in one offset cancellation block should happen

at a similar rate to that in the other offset cancellation block, the common-mode

feedback of the circuit can maintain adequate performance of the integrators in this

dynamic mode for longer than if the circuit were single ended.

The dynamic scheme can reduce the circuit’s output resistance since a capaci-

tive feedback path from the output back to the gate of COMP4 exists, through the Cgd

of the composite device. Even if the composite device has infinite output resistance,

in this dynamic mode of operation, the output resistance becomes:

Ro =
CHold2 + Cgd

gmCgd

(3.39)

where gm is the transconductance of the composite device.

Care was taken in the layout of transistors M1 through M4, capacitors CHold1

and CHold2 and the wires carrying SIN and SIN to ensure that the coupling capac-

itances between SIN/SIN and nodes vGI− and vGO− were minimized. A guard ring

consisting of densely spaced vias from the substrate up to Metal-5 surrounds CHold1

and CHold2. A grounded layer of Metal-3 separates the wires carrying SIN/SIN from

the connections to the dynamic nodes.
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Figure 3.13: Overflow detection circuitry.

An analog computer will give erroneous results if any of its signals exceed the

range over which an individual block can accurately process them. For every circuit

except the integrator, the size of the output is uniquely determined by the size of the

input. By ensuring that the input is limited, it can be guaranteed that the output

will not saturate.

On the other hand, there is not a 1-1 correspondence between the input signal

level and the output signal level for the integrator, owing to the integration operation.

Regardless of how judiciously one limits the size of the input, the output will still

saturate if a small input is applied for a long enough time. Therefore, the block that
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is in greatest need of circuitry to detect saturation (or overflow) at its output is the

integrator.

The circuit that does this is shown in Fig. 3.13. Enclosed in the dotted box

is the part of the integrator’s core that is relevant to overflow detection. Enclosed in

the dashed line is the circuitry that detects the integrator’s output saturation. This

is labeled “OVFL Detection” in Fig. 3.4. The connection between the core and the

overflow detection circuitry comes through the wires labeled vS+ and vS− in both

Figs. 3.4 and 3.13.

The gate of transistors M0 through M3 (in the block labeled OVFL Det.) are at

a DC voltage generated by the diode-connected transistor M8. M0-M3 and M8 have

dimensions W = 1µm and L = 20µm). Assuming M0 is in saturation, it will conduct

about 250 nA because M0 through M3 form a device of W = 1µm, L = 80 µm. This

current flows out of the diode-connected PMOS transistor M5. The current mirror

consisting of M5-M7 would mirror this current, divided by 12.5, if M6 and M7 are in

saturation. The mirroring ratio of 1
12.5

occurs because the aspect ratio of M5 is 12.5

times that of M6 and M7. M4-ovfl has the same gate and source voltages as M4 in

the core of the integrator. If M4-ovfl is in saturation, it conducts 1/10th the current

that M4 does, since the former is 1/10th the width of the latter. For the purpose

of this discussion, the term “saturation current” refers to the approximate current a

given transistor would conduct if it were in saturation for its present vG, vS, and vB.

The signal OV FL goes high if either (or both) of the drains of M6 and M7 are at

a voltage near VDD. This will occur if the saturation current of M4-ovfl or M12-ovfl
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is smaller than the saturation current of M6 or M7 (250 nA/12.5 = 20 nA). This

occurs when the saturation current of either M4-ovfl or M12-ovfl is less than 20 nA

which corresponds to either M4 or M12 conducting less than 200 nA, or 20 % of its

full scale range. M4 or M12 conducting this little current means that the signal has

reached 80 % of its full scale range, since the bias current for M4 and M12 is 1 µA.

When M4 or M12 is conducting only 200 nA, the other device is conducting 1800 nA,

and therefore the overflow circuitry detects when the output is nearing saturation in

both the positive and negative direction. The currents processed by this circuit are

small, and the OV FL flag may not toggle precisely at 80% of full scale, however, it is

somewhat unimportant when exactly the flag is raised, so long as it gets raised before

the block saturates.

The digital output OV FL is latched into a scan chain that can be read from

the chip after a simulation has finished. A signal indicating whether an overflow has

occurred can be monitored during a simulation.

Dac for Tuning

As noted in the discussion of the core of the integrator, the integrator’s time constant

is inversely proportional to a current, ITUNE. Two equal currents are sourced by the

block labeled DAC in Fig. 3.4 which supply the core’s two copies of ITUNE. The DAC

takes as its reference a current of about 1 µA and a 10-bit digital word. From these,

it generates two currents ranging from near 0 to 3 µA, which are ideally equal to one

another.
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Figure 3.14: Digital to analog converter used to generate tuning currents for the
integrator.

The operation of the DAC is much like an R-2-R ladder, in that at each stage

the current is divided in two, with half coming from the next stage and the other half

either coming from the output or from a dump node. However, here the elements are

transistors. Fig. 3.14 shows three bits of the structure. Signals IOUT and IIN refer

to the output and input, respectively, of the DAC and should not be confused with

similarly named signals in Fig. 3.4. The arrow has been omitted from the symbol

for the NMOS transistors used in Fig. 3.14. All transistors in the figure are NMOS

devices. For the time being, assume that each NMOS transistor is the same size

(W/L), and that nodes IOUT and IDUMP are at voltages high enough to keep all

transistors connected to them in saturation. The right-most pair of transistors (M13
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and M14), with gates connected to VDD form an equivalent device of W/2L. The

digital signal b2 selects which series combination of devices (M9/M10 or M11/M12)

is on. The pair that is on has the same gate and source voltage as M13/M14. Since

it is assumed that nodes IDUMP and IOUT are at a voltage high enough to keep all

devices connected to them in saturation, the current through the pairs of devices is

determined almost exclusively by their gate and source voltages. Therefore, from the

point of view of the current flowing into Node 3, the b2-controlled pair and M13/14

act like two devices in parallel, forming an equivalent device of 2W/2L which will,

in this application, behave like a device of W/L. Now this equivalent device is in

series with M16 (W/L) forming a device equivalent to W/2L. This analysis continues

until we see that the pairs controlled by b0 will form a device of W/2L in “parallel”

with a collection of transistors to the right of node 1, which, regardless of the state

of signals b1 and b2, form a device of W/2L. Hence, IIN is split in two, with half

flowing from the right and half flowing from either IOUT or IDUMP . Therefore, the

state of b0 determines if IIN/2 flows from IOUT or IDUMP . This splitting occurs for

each successive bit. Bit b1 determines if IIN/4 flows from IOUT or IDUMP and b2

determines if IIN/8 flows from IOUT or IDUMP .

IOUT is applied to a simple two-output PMOS current mirror (with a gain of

3), whose two outputs are applied to the integrator core as the two copies of ITUNE.

The actual DAC used differs somewhat from that described above in that the series

devices (those whose gates are always connected to VDD; M15 and M16 in Fig. 3.14)

are slightly shorter than the shunt devices (M1-M14). This has the effect of skewing
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Figure 3.15: Iout Vs. DAC word. Ideal and two nonideal characteristics.

the DAC’s IOUT vs. DAC word transfer characteristic to be non-monotonic. When

the input of a 10-bit R-2-R DAC is 511, b0, the most significant bit is low, and the

9 less significant bits are high. That is, the b0 bit is directing its current (IIN/2)

from the “dump” node, while the others are directing their currents from the “out”

node. When the input is incremented to 512, b0 is high, and b1-b9 are low. Now, b0

directs its current from the “out” node, while the others direct their currents from

the “dump” node. In the absence of mismatch, the output current for an input of 512

is one step ( 1
1024

IIN) larger than the current for an input of 511. Fig. 3.15 A shows

this ideal case. However, if M15 is longer (less conductive) than the other transistors,
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the characteristic in Fig. 3.15 B results. As shown in the figure, this larger step in

the IOUT Vs. DAC word characteristic means that a range of outputs cannot be

generated. In the context of the integrator this would mean that the integrator could

not be tuned to a range of time constants. On the other hand, if M15 is shorter

than the other transistors the characteristic in Fig. 3.15 C results, which is non-

monotonic. While non-monotonicity is undesirable in some applications, here it is

not, since the calibration scheme for the integrator measures the time constant vs.

DAC word characteristic and stores the results in a look-up table. When a particular

time constant for the integrator is desired, the DAC word that gives the time constant

closest to the desire one is selected. This scheme does not rely on the measured time

constants being in any particular order. Note that no range of unrealizable values of

IOUT or time constants results from M15 being shorter than the rest. Since there will

inevitably be mismatch between transistors, but mismatch in one direction is more

troublesome than in the other, the length of the series devices (M15 and M16) was

chosen to be shorter than the length of the shunt devices, so that in the presence of

mismatch, no gaps in the IOUT characteristic could occur.

The DAC used in the integrator is the 10-bit version of the 3-bit DAC in

Fig. 3.14.

3.3.3 VGA / 2-Input Multipliers

An overview of the VGA/2-input multiplier is shown in Fig. 3.16. A control signal

(MULT), stored in the circuit’s memory, determines whether the circuit behaves as a
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Figure 3.16: Top level diagram of the VGA / 2-input multiplier circuit.

2-input multiplier or a variable gain amplifier. The depiction of the internals of the

core are for conceptual purposes only; it doesn’t have separate circuitry for the VGA

and the 2-input multiplier.

The input signals of the circuit are first processed by range-selectable current

mirrors, which have the same gain settings as those in the input of the integrator. IB1

and IB2 are set to 20 µA when CM1/2 have gains of 20:1, 1 µA when CM1/2 have

gains of 1:1 and 100 nA when CM1/2 have gains of 1:10. Hence, the bias component

of the signal applied to Port 1 is 1 µA.
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Vdd Vdd
Vdd

VddVdd Vdd

All current sources: 1 uA

+IT
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i2- i2+
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vb vb
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Figure 3.17: Core of the VGA / 2-input multiplier.

Port 2 operates in a somewhat different fashion. CM3/4 assume the same gains

as CM1/2 but IB3 and IB4 are set to IT

1µA
20 µA, IT

1µA
1 µA and IT

1µA
100 nA where IT is

a current generated by the DAC. For all settings, the bias component of the signal

applied to the core of the circuit at Port 2 is IT . This scheme, and that used for

Port 1, allows for the circuit to process signals over a wide range while keeping small

the range of currents over which the devices in the core of the circuit must operate.

This is desirable since the core has devices that must remain weakly inverted, and

as discussed in Sect. 3.3.2 this range is limited. The core of the VGA/two-input

multiplier circuit [20] (Fig. 3.17) uses weakly-inverted MOSFETs (M1 though M10

) in translinear loops in a fashion similar to that of the integrator. When the signal

MULT is low, the drains of M4 and M5 are connected together, and so are M6 and

M7; the circuit acts as a VGA with a gain of 2IT /1 µA from i1 to io assuming i2

is zero. This is depicted in Fig. 3.18. When MULT is high, the circuit becomes a
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Vdd Vdd
Vdd

VddVdd Vdd

All current sources: 1 uA

+IT

vb

i1+ i1-

iO+iO-

i2- i2+
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Figure 3.18: Core of the VGA / 2-input multiplier in variable-gain mode.

four-quadrant multiplier, as depicted in Fig. 3.19 with [20]:

i+o − i−o =
(i+1 − i−1 )(i+2 − i−2 )

1 µA
(3.40)

Vdd Vdd
Vdd

VddVdd Vdd

All current sources: 1 uA

+IT

vb

i1+ i1-

iO+iO-

i2- i2+
+1uA

M2M1 M3 M4 M5 M6 M7 M8 M9 M10

M11

M12

M13

M14

M15

M16

M17

M18

+IT

+2IT+2IT

+1uA

vb vb
vb

Figure 3.19: Core of the VGA / 2-input multiplier in multiplier mode.

The output current mirrors can be set to gains of 10:1, 1:1 and 1:20. IB5/6 are

set to IT

1µA
100 nA, IT

1µA
1 µA and IT

1µA
20 µA for the three ranges, respectively.

The gain of the VGA is set through a combination of tuning IT , for fine adjust-

ments, and stepping the gains of the input and output mirrors, for coarse adjustment,
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allowing for finely spaced gains from 0.01 to 100.

3.3.4 Fanout Blocks
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Figure 3.20: Schematic of the fanout circuit.

Fanout blocks are needed to apply copies of one signal to the input of several

blocks. The schematic of one is shown in Fig. 3.20. Device names beginning with

the letter “C” denote composite devices similar to that in Fig. 3.10. When the signal

HIGH is low, the circuit’s input range is 18 µA, transistors M1, M4, M8, M11 and

M13 are off, M3 and M10 are on, and the circuit behaves like a simple current mirror.

Fig. 3.21 shows a simplified schematic of the fanout block in this mode. Raising

signal HIGH, turns on M1, M4, M8, M11 and M13, and turns off M3 and M10.

This activates the source-follower stages (M2 and M9). Fig. 3.22 shows a simplified

schematic of the fanout block in this mode. These stages are used to shield the input

of the circuit from the large gate capacitance of the four composite devices on each
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Figure 3.21: Schematic of the fanout circuit in its largest signal range.

side of the circuit. M2 and M9 are much smaller in gate area than the composite

devices. When the input range is not its highest, the input resistance of the circuit

increases such that putting it in parallel with the large gate capacitance would slow

the circuit unduly.
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Figure 3.22: Schematic of the fanout circuit in is smallest and middle signal range.

If composite devices CN1 to CN8 and CP1 to CP8 are all in the same con-
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figuration as one another, the circuit has a gain from input to each output of 1. By

configuring input composite devices differently from output composite devices non-

unity gain can be achieved. The composite devices are controlled in groups of four.

These groups are: CN4, CP4, CN5, and CP5; CN1, CP1, CN6, and CP6; CN2, CP2,

CN7, and CP7; and CN3, CP3, CN8, and CP8. Within each quartet, all composite

devices have the same configuration, however, each quartet may have a different con-

figuration than the others. Gain is possible since the gate-source voltage of the input

composite device (CN4) is the same as each of the output devices (CN1, CN2 and

CN3), but their W/L ratios may be different and assuming the voltage at the outputs

is high enough to keep the devices in saturation, current is proportional to the aspect

ratio of the composite device. The possible range and gain settings are summarized

in Table 3.3, with “l” denoting the lowest signal range, “m” denoting the medium

signal range, and “h” denoting the highest signal range.

input range output range gain

l, 111 nA l, 111 nA 1

l, 111 nA m, 1 µA 9

l, 111 nA h, 9 µA 81

m, 1 µA l, 111 nA 0.11

m, 1 µA m, 1 µA 1

m, 1 µA h, 9 µA 9

h, 18 µA l, 222 nA 0.012

h, 18 µA m, 2 µA 0.11

h, 18 µA h, 18 µA 1

Table 3.3: Fanout block range settings and limits.
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3.3.5 Exponential

iin+
iin-

−

+

Vdd

Vdd

−

+

-1

1

Differential to single-

Single-ended to differential

io+

io-

Vdd

A1

A2

D1
D2

M1

M2

R

I2

I2
I1

I3

ended current mirror

current mirror

C

Figure 3.23: Exponential circuit.

A simplified block-diagram/schematic of the exponential circuit is shown in

Fig. 5.12. The input to output behavior of the circuit is given by:

i+o − i−o = 2I1 exp

(
R

i+in − i−in
nφt

)
(3.41)

where φt is the thermal voltage and n is the diodes’ slope factor, assuming that

the diodes match, and that the two current sources carrying I2, which keep a min-

imum current flowing through M2, exactly cancel. The diodes are formed by the

source/drain to well junction of a PMOS transistor. Amplifier offsets scale the out-

put by a multiplicative factor only and their effect can be canceled through adjusting

the gains of the blocks connected to the exponential block’s input.

The generation of the exponential must be done on a single-ended signal, since

e(i+in−i−in) 6= ei+in−e−i−in . The output single-ended to differential current mirror is a class-
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AB circuit. Class-AB mirrors have the following advantages over a class-A mirror,

assuming that the class-A circuit’s bias has been selected to handle the largest signal

expected.

• lower power dissipation, both when no signal is applied, and when the largest

signal is applied.

• lower output current noise for small signals, since the current through the active

devices is smaller.

• graceful degradation should the input exceed the maximum expected signal.

• smaller offset errors due to mismatch.

Most discussion of class-A versus class-AB circuits centers around the first

three items. The last claim is explained in more detail below.

Consider a class-A current mirror designed to handle a maximum current of

IMAX . To do this, the devices are biased with that current, at least. Assume that the

input and output devices’ aspect ratio match one another’s to 1 % and the input and

output bias sources match exactly. Assume also that the only source of drain current

mismatch is mismatch in their aspect ratios. When no input signal is present, the

output offset of this mirror will be 0.01 × IMAX . Now, consider a class-AB mirror

intended to handle the same maximum current of IMAX , and assume that input and

output devices match in the same fashion. In this case, when there is no input present,

the devices are conducting a much smaller current, ISTAND. Now the output offset will

be 0.01×ISTAND, which is smaller than for the class-A mirror since ISTAND ¿ IMAX .
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Similar arguments can be made for the way in which output currents of a mirror will

match one another in the case of a mirror with multiple outputs. Offsets due to

mismatches between the threshold voltages of devices are also smaller for class-AB

circuits than for class-A circuits, by similar reasoning.

Two disadvantages of class-AB currents mirrors are their increased complexity

and their potential for instability. The former stems from the more complicated

biasing network needed to establish the minimum current and the latter stems from

a combination of there being more stages in the feedback loop and the wider range

of loop gain over which stability must be guaranteed. Even a simple, class-A mirror

using a diode-connected device is a feedback system. The input small-signal current

develops a small-signal voltage across the ro of the diode-connected device. This

voltage is applied across the gate and source terminals of the device and induces a

current to flow from drain to source. However, this loop is stable for any impedance

connected to the diode node, with positive real part, assuming quasi-static operation

of the devices. This assumption is valid for all but the highest frequencies of operation

and seldom impacts the stability of a simple current mirror.

On the other hand, the greater complexity of a class-AB circuit can lead to

instability. The schematic of the class-AB mirror used at the output of the exponential

circuit is shown in Fig 3.24. It is based on a class-AB output stage, but with multiple

outputs. To use it as a current mirror, the high-impedance node vIN is connected to

the current output ioutfb and whatever current flows in or out of ioutfb is copied to

iout1 and copied, with an inversion, to iout2.
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Figure 3.24: Schematic of the class-AB mirror used in the exponential circuit.

If terminal vIN is at the same voltage as the gate of M27, transistors M1

through M20 are biased with a current of ISTAND. Discussion will focus on the output

devices M9-M12, since they control the output current that is fed back to node vIN .

When vIN is increased, M9 and M10 conduct less current and M11 and M12 conduct

more. The range of output current is much larger than ISTAND. However, for the

circuit to sink a large output current, the input signal must propagate through C, M31,

M21 and M4. This path can have enough excess phase to make the circuit unstable

when connected as a mirror, even with the feed-forward capacitor C. The circuit was

stabilized by adding a grounded capacitor to the vIN/ioutfb node in Fig. 5.12.

3.3.6 Logarithm

The logarithm circuit (Fig 3.25) uses a class-AB current mirror at its input, similar

to that used at the output of the exponential circuit, that converts the differential

input to a singled ended signal. This current is forced through a diode formed by the
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Figure 3.25: Schematic of the logarithm circuit.

source/drain to n-well junction of a PMOS device (M1). A linear transconductor,

shown in Fig. 3.26, compares the voltage at the source/drain of M1 to the voltage at

the source/drain of M2 and generates a differential output current. The reference cur-

rent (IREF ) through M2 determines the input current that gives zero output current.

The input to output behaviour of the circuit is given by:

i+o − i−o = Gmnφt log

(
i+in − i−in
IREF

)
(3.42)

where Gm is the transconductance of the transconductor, n is the slope factor of the

diodes and φt is the thermal voltage (kT/q).

The transconductor is similar to [21], with input devices M11 and M19 biased

in the triode region. Cross-coupled devices M10 and M18 cancel the charge injected

through the gate-drain capacitance of M11 and M19 and improve the circuit’s high-
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Figure 3.26: Schematic of the logarithm circuit’s transconductor.

frequency performance. The transconductance (Gm) of the circuit is given by:

Gm =
∂(i+o − i−o )

∂(v+
IN − v−IN)

= µCOX
W

L
VDS ≈ IDSM8

(VGS − VT )0

(3.43)

where VT is the threshold voltage of the input devices, VGS and VDS apply to the

input devices when the differential input voltage is zero, and µ, W , L and COX are

parameters of the input devices. M1 through M7 generate the bias voltage for M8

and M16. This bias is not signal dependent, despite the gate of M5 being connected

to v−IN since this input is tied to a DC voltage in the logarithm circuit. The current

through M8 will be the difference between that flowing through M6 and M1.

Eq. 3.42 is only valid for positive values of v+
IN − v−IN . Whereas the logarithm

function has a definition for negative (and complex) arguments, this logarithm circuit
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will saturate as its input is reduced, before the input reaches zero. The value to which

it saturates is set by the bias current of the output transconductor.

3.3.7 Programmable Nonlinear Functions
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Figure 3.27: Nonlinear functions that can be implemented with one programmable
nonlinear block.

There are four programmable nonlinear blocks within each Macroblock. Each

can implement the following where x is the input and y is the output:

• sign: y = c1 for x < 0 and y = c2 for x > 0 where c1 and c2 are constants,

programmable for each pair of blocks. (Fig. 3.27 A)

• Absolute value: y = |x|. (Fig. 3.27 B)

• Saturation: y = x for c1 < x < c2; y = c1 for x < c1; and y = c2 for x > c2,

where c1 and c2 are constants, programmable for each pair of blocks. (Fig. 3.27
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C)

• Piece-wise linear basis function: y = x − c1 for x > c1 and y = 0 for x < c1,

where c1 is a programmable constant. (Fig. 3.27 D)
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Figure 3.28: Minimum and maximum function.

Two neighboring blocks can be used together to implement the following where x1

and x2 are inputs and y1, y2 and y3 are outputs:

• Minimum and maximum: y1 = min(x1, x2); y2 = max(x1, x2); y3 = c1 when

x1 > x2 and y3 = c2 when x1 < x2, where c1 and c2 are programmable constants

(Fig 3.28).

• Gate: y1 = x1 when x2 > 0; y1 = 0 when x2 < 0; y2 can be any one of the

functions from the single block list; y3 = c1 when x2 > 0 and y3 = c2 when

x2 < 0, where c1 and c2 are programmable constants.

• Sample and hold: y1 = x∗1 when x2 > 0; y1 = 0 when x2 < 0; x∗1 is the value

of x1 when x2 last transitioned from negative to positive; y2 can be any one of
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Figure 3.29: Gate function.
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Figure 3.30: Sample and Hold function.

the functions from the single block list; y3 = c1 when x2 > 0 and y3 = c2 when

x2 < 0, where c1 and c2 are programmable constants.

• Track and hold: y1 = x∗1 when x2 > 0; y1 = x1 when x2 < 0; x∗1 is the value

of x1 when x2 last transitioned from negative to positive; y2 can be any one of

the functions from the single block list; y3 = c1 when x2 > 0 and y3 = c2 when

x2 < 0, where c1 and c2 programmable constants.
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Figure 3.31: Track and Hold function.

Each nonlinear block consists of several current mirrors, current to voltage (I

to V) converts, comparators, switches and some combinational logic (Fig 3.32). Two

I to V convertors generate voltages that correspond to the currents generated by the

DACs which are similar to those used in the integrator. These voltages are compared

against those corresponding to the input current. The outputs of the comparators are

processed by the combinational logic to determine when the various switches should

be closed, generating the above single-block functions. Wherever the input-output

characteristic has an abrupt slope change, the circuit is switching internally. For

example, when the input signal to a block implementing the saturation function is

between the lower and upper saturation limits a copy of the input signal is connected

to the output. When the input level reaches the upper saturation limit, the input

copy is disconnected from the output and replaced by a copy of the upper saturation

limit. Mismatch between the input and its copy and the upper limit and its copy

can lead to discontinuity in the input-output characteristic of the circuit. To limit
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Figure 3.32: Schematic of one nonlinear block.

this, an attempt was made to select sizes for critical devices that limit mismatch in

currents to 1 %. This in turn limits the size of discontinuities in the input-output

characteristics to 1 %.

For the dual block functions, there are more comparators, more combinational

logic, and a mirror in which the gates of the output devices are separated from the

gates of the input devices by switches, allowing for the input current at particular

times to be sampled.
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Figure 3.33: Schematic of one switch and SRAM cell.

3.3.8 Switches and Memory

As mentioned in Sect. 3.1 connections between blocks are made through complemen-

tary pass-transistor switches (Fig. 3.33) whose state is stored in an adjacent SRAM

cell. M7 through M10 implement the switch. M1 through M6 form a 6-transistor

SRAM cell which holds the state of the switch. Programming the cell, by raising

wordline, when bit is pulled to ground will close the switch. Because the input volt-

age of blocks is near VDD/2, complementary transistors help keep the on-resistance of

the switch low. M7 and M8 have W = 0.9 µm and L = 0.24 µm and M9 and M10 have

W = 1.5 µm and L = 0.24 µm. These dimensions are a compromise between very

narrow devices which would reduce the capacitive loading on the inputs and outputs

of blocks and wider devices which have lower on-resistance. It is important to realize

that each path from the output of one block to the input of another is loaded by

almost 90 switches, each containing 2.4 µm of drain diffusion. Signals that must be
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routed from one macroblock to another are loaded by an additional 160 switches.

This switch/SRAM-cell is tiled in arrays wherever collections of input wires

cross collections of output wires. However, between the output of a given block and

its connection to the wire that enters the switching matrix is the circuit in Fig. 3.34.
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Figure 3.34: Schematic of output polarity switch and SRAM cell.

Based on the state of the SRAM-cell (M1 through M6) i+in is either connected

to i+out or to i−out (Fig. 3.34). The latter is done to invert the signal. The signal close is

a control signal that, when raised, connects the switch, with the polarity determined

by the SRAM-cell’s state. For reasons outlined in Sect. 3.4.3, the outputs of the

blocks are connected and disconnected from the switch arrays at various times during

the preamble to a simulation.

The SRAM cells are programmed using a standard scheme using clock (CLK)

and write enable (WR EN) signals. A wide fan-in NOR-based word line decoder
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converts 6 address bits to up to 64 word lines. When CLK is high, every bit and bit

line is pre-charged to VDD. When CLK is lowered, if the particular column has been

selected, either bit or bit is pulled to ground by a footer circuit.

3.4 Chip Architecture in More Detail

3.4.1 Interconnection of Blocks

The functional blocks are organized within the macroblock as shown in Fig. 3.2.

Within the macroblock, input wires for the blocks in a given row run above the row

of blocks with the exception of the wires for the row of nonlinear blocks, which run

below the row. This is different from how it is depicted in Fig. 3.2, as the latter is

intended only for conceptual purposes. Most output wires run to the right of a given

column of blocks with the exception of the wires connected to the outputs of the

nonlinear blocks. The three outputs for the pairs of nonlinear blocks (not including

the log/exponential blocks ) run in the column in between the pair. From bottom to

top, this scheme leads to the following count of input wires (pairs) in each row: 5, 10,

5, 11 since integrators each have one input, VGA/2-input multipliers each have two

inputs, fanouts each have one input and the nonlinear blocks each have one input.

From left to right the columns have the following numbers of output wires: 11, 8, 11,

8, 10. There are a total of 31 input wires and 48 output wires. Where each group of

input wires crosses a group of output wires, there is an array of complementary pass

transistor switches and SRAM cells which hold the state of the CMOS switches. A 3
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by 3 array of these switches is shown in Fig. 3.35. To simplify the schematic, signals

in the figure are single-ended and switches are only NMOS. A schematic of the actual

SRAM-cell/switch used is in Fig. 3.33. The bit terminal of all of the cells (Fig. 3.33)

in a given row are connected together, as are the bit terminals. Collectively, all of

the signals that connect bit and bit terminals are known as bit lines. The wordline

terminal of all of the cells in a given column are connected together.

The SRAM cells are controlled in a standard, clocked, programming scheme,

with the notable difference between this and other memory applications that this is

a write-only memory, as there is no need to read its state. Word lines run vertically,

parallel to the wires connected to the outputs of blocks, and bit lines run horizontally,

parallel to the wires connected to the inputs of blocks (Fig. 3.35). In terms of physical

layers, the horizontal input wires run on metal-5 (M5), output wires on M4, word

lines on M2 and bit lines on M3.

The state of a switch is controlled using the following sequence:

• With all word lines low, all bit lines are pre-charged to VDD, whenever both a

clock signal and a write enable signal are high.

• When the clock signal falls, the switch’s word line is raised, closing M5 and M6

(Fig. 3.33).

• Also when the clock signal falls, either the bit signal or the bit signal is pulled

low by a “footer” circuit, causing the state of the cell to be set.

• When the clock signal rises, the word line signal falls, disconnecting the cell
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from the bit lines.

There are 31 inputs within a macroblock and 31 pairs of bit lines running parallel.

The state of the switches is programmed by an 8-bit word, meaning that the 31 bit

lines are divided into 4 groups (3 groups of 8 and 1 group of 7), selected by two

address bits. The footer circuitry is such that writing a 0 to the cell pulls the bit side

low and closes the switch. Each word line corresponds to a particular output and

typically each output is connected to only one input. This means that only one of

the bits in the 8-bit word is a 0.

If the bit lines ran parallel to the outputs and multiple outputs in the same

group of 8 were connected to one input, more than one bit in the eight bit word

would be a zero. To properly generate the programming data for the memory, multi-

ple connections must be considered simultaneously, which complicates programming.

In the scheme that is used, multiple outputs connected to one input requires that

multiple word lines go high in separate programming words. This means that only

one connection needs to be considered at a time.

Wherever a group of input wires (numbering 5, 10, or 11) crosses a group of

output wires (numbering 8, 10, or 11) there is an array of switches, making for 9

possible array sizes. To reduce the number of blocks needing to be laid out, only

three array sizes were used: 5 by 11, 10 by 11 and 11 by 11, where the first number is

the number of rows (i.e. number of input wires to connect) and the second number is

the number of columns (i.e. number of output wires to connect). In several instances,

only 8 columns are needed, meaning that three columns are unused. Of 55 columns
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of cells in the memory arrays, only 48 are needed. The improper connection of the

unused columns of switches led to the most significant design flaw on the chip, which

is described below.

In addition to the arrays of switches wherever groups of input wires cross groups

of output wires, there are more complicated switches (Fig. 3.34) that separate each

output from its vertical wire in the grid. Each of these output switches can connect

its input side to its output side directly, or with cross-coupling. This allows signals to

be inverted, and possibly subtracted from others. These switches take a signal, close,

which, when high, closes the switch with the polarity determined by the state of the

SRAM cell. When close is low, the switch is open. These switches are connected such

that their word line is connected to the word line associated with the column in the

switch arrays corresponding to their output wire, so that the output switch can be set

whenever a connection is made. The bit lines of these output switches are connected

together and are controlled by a separate footer circuit. The complete programming

word is 9-bits, consisting of the 8-bits discussed above and the single bit that controls

the polarity of the output’s connection. A signal passes through two switches to get

from the output of one block to the input of another when the two blocks are in the

same macroblock.

The input and output wires within each macroblock extend outside the mac-

roblock, allowing for connections between blocks in different macroblocks. Below each

row of macroblocks are 16 pairs of wires over which the output wires of blocks within

the macroblocks extend. Each output can be connected to any of these 16 wires
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through a 16-row, 48-column array of switches and memory. Beside each column of

macroblocks are 16 pairs of wires over which the input wires of blocks within the

macroblocks extend. Each input can be connected to any of these 16 wires through

a 31 row, 16 column array of switches and memory. Wherever the groups of 16 hori-

zontal wires cross a group of 16 vertical wires is a 16 by 16 array of switches. These

external switches span 64 columns and 47 rows. Together, they can be thought of

as 47 (31+16) row, 64 (48+16) column array, with a section (31 rows, 48 columns)

removed. The thick, dashed line in Fig. 3.3 shows how a signal is routed from the

output of a block in macroblock W to the input of a block in macroblock Z. The three

’X’s indicate three switches that are closed to allow this connection. The signal must

also pass through the output switch associated with the block inside marcoblock W,

for a total of four switches in the signal path.

Each end of the vertical and horizontal wires between macroblocks can be

connected off chip. The horizontal wires are used to route signals from blocks on-chip

to off-chip. At each end of the 16 wires are 16 switches. Adjacent switches have

their output sides connected together. Each switch’s input side is connected to one

of the 16 wires. This schemes lets the pair of switches act as a 2-1 multiplexor. The

8 output sides are connected off-chip. Likewise, there are groups of 16 switches at

the top and bottom of the groups of vertical wires which allow connections from off-

chip to be made to the inputs of the chip’s blocks. These are connected such that

adjacent switches’ act as 1:2 demultiplexors with input sides connected together and

each output side connected to a vertical wire.
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Memory Design Flaw

Two choices are possible for how the word lines could be controlled. In the first, all

55 word lines could be addressed and controlled, while in the other, the 7 word lines

connected to the extra, unused columns of cells could be disabled, leaving only 48

word lines. Both schemes require 6 bits to address, however, circuits for an earlier chip

that had 48 word lines had been designed and were used; thus the latter scheme was

used. The cells in the unused columns of switches/SRAM cells were each connected

in the following way:

• The input side of the switch was connected to the input wire, and hence to the

input of a block.

• The output side of the switch was connected to ground.

• The bit lines of the SRAM cells were connected to the bit lines used for the

active SRAM cells.

• The word lines of the SRAM cells were connected to ground.

This approach has the flaw that the SRAM cells in the unused columns cannot

be altered. While it is not necessary to program these cells to close switches, this

scheme doesn’t allow them to be reset properly when the chip is powered on. An

SRAM-cell consists of two back-to-back inverters (M1/M2 and M3/M4 in Fig. 3.33),

and is a bistable system. If the circuit had perfect symmetry, the state into which

it settled when the chip is powered on would be randomly determined by thermal
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noise, with a 0.5 probability for each state. If an unused SRAM cell/switch powers

up (when the chip is powered on) in the closed state, the input wire connected to the

switch is shorted to ground since the output side of the switch is connected to ground.

With 7 unused switches connected to each input wire, all 7 SRAM cells would have

to power up in the OFF state for an input to not be shorted to ground. If the two

states of a given SRAM cell were equally likely, this would occur with a probability of

(1
2
)7 = 1

128
. Clearly, if the power-on behaviour of the memory behaved in this fashion

almost no block would be functional, since there would be a 127
128

probability that its

input was shorted to ground.

In HSPICE and Nanosim simulations, all blocks were functional, and this error

was not detected. This suggests that some electrical condition exists that favours the

OFF state over the ON state when the chip is powered on. The capacitance between

the input/output wires of the switches and the bit side of the SRAM cell is larger

than that to the bit side of the SRAM cell. On power-on the inputs of the blocks will

start to charge up to a voltage determined by the input current mirrors of the block,

assuming that they are not shorted to ground by an SRAM cell. It is speculated that

this increase in voltage is capacitively coupled more strongly to the bit side and nudges

it sufficiently that the bit side reaches VDD and the bit side is pushed to gnd. The

coupling is stronger because the PMOS devices are wider than the NMOS devices.

For this trend to hold up in practice, the actual waveforms on start-up would have

to be the same as those in simulation, and this nudge needs to be larger than the

random noise in the system, absent from HSPICE and Nanosim simulations, which
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might offset this push. The prevalence of this problem and solutions to it are discussed

in Chapter 5.

3.4.2 Functional Block Memory

Every functional block, with the exception of the logarithm blocks, has some memory

for holding range settings, DAC input words, and other parameters. The memory of

each block is a collection of level-sensitive gated latches. Input data come from the

same data lines as are used to program the switch memory. The output of a 6-input

AND gate, implemented by a combination of 2-input gates, activates the latches. 5

address lines, and their complements, are routed around each macroblock. 5 inputs of

the AND gate are connected either the true or complement polarity of each address

signal, while the sixth signal is connected to a control signal, which is toggled to latch

in the data.

3.4.3 Simulation Control

This section describes control of the chip after the states of the switches and the

block-memory has been programmed. The following signals are involved in simulation

control:

• CAP CON : This corresponds to the signal VCAP in Fig. 3.5. During the pream-

ble to a simulation, this signal is high. It is low during a simulation.

• SIM : All of the close signals associated with the output switches for the inte-
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grators are connected to this signal. During the preamble to a simulation, this

signal is low. Raising it begins the simulation.

• CON INP : All of the close signals associated with the output switches for

every block except the integrators are connected to this signal. During the

preamble to a simulation and during a simulation, this signal is high. It is

lowered when integrators are reset.

• S IN : This corresponds to the signal V2 in Fig. 3.4. This connects the integrator

in feedback during offset cancellation. It is high during part of the preamble to

the simulation and low during the simulation.

Typical waveforms for the four simulation control signals are shown in Fig. 3.36.

One progression through a simulation sequence is described below, beginning at the

falling edge of SIM :

• The signal CON INP falls T7 after SIM falls. The requirement on T7 is T7 ≥ 0.

• The signal CAP CON is raised T8 after CON INP falls, resetting the integra-

tors. The requirement on T8 is T8 ≥ 0.

• T1 is the duration over which CAP CON is high. This must be long enough to

reset the integrators. The time constant for resetting them is much smaller than

their integration time constants, since the resistance through which each capac-

itor is charged or discharged is much smaller than the 1/gm of the transistors

in the integrator’s signal path. T1 needs to be longer than a few microseconds,
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but is likely longer than that because it is during this interval that the chip is

programmed.

• T2 is the interval between CAP CON falling and CON INP being raised. The

requirement on T2 is T2 ≥ 0.

• T3 is the interval between CON INP being raised and S IN being raised. The

latter starts the offset cancellation procedure. The requirement on T3 is T3 ≥ 0.

• T4 is the duration of the offset cancellation procedure. During this interval, the

integrators are placed in unity-gain feedback. During T2 + T3 the output of the

integrator may have drifted. T4 needs to be longer than a few time constants

of the integrator with the slowest time constant. Integrators have a nominal

time constant of 40 µs. If the output of the integrator had drifted (because of

an input offset) to the point of saturating the integrator to its fullscale output,

it would take 7 time constants for its output (and input since it is in unity-

gain feedback) to reach < 0.001 of full scale. For integrators with nominal

time constant, T4 ≥ 280 µs. This would reduce the input offset to be no more

than 0.1 % of fullscale. One could wait longer; however, the nonidealities of the

scheme (charge injection and capacitance division) prevent the offset from being

smaller than about 0.1 %. Lengthening T4 does not improve offset cancellation.

• T5 is the interval of time between the end of the offset cancellation phase and

the connection of the output of the integrators to the rest of the system. Ideally,

this interval of time should be small; this prevents the outputs of the integrators
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from drifting significantly due to their residual input offsets.

• T6 is the duration of the actual simulation. Shortly after SIM is raised, the

inputs of the system are applied and the outputs are observed. In the case of

systems that are nominally low pass, it may be prudent to delay applying the

inputs to the system so that the response of the system to residual offsets can

be observed, allowing this effect to be subtracted out from the total response

of the system.
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Figure 3.35: 3 x 3 section of the SRAM / switch grid.
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Figure 3.36: Typical waveforms of simulation control signals.
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Chapter 4

Analog Computation Environment

4.1 Overview

A brief overview of the analog computation environment can be found in Sect. 1.1

and in Fig. 1.1. Critical aspects of the computation environment are to allow:

• The tight coupling of analog and digital portions.

• Rapid programming of the analog portion.

• Pre-simulation calibration of the analog portion.

• Close monitoring of signal levels.

• The connection of measurement equipment.

• The display of results.
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The rest of this chapter describes the implemented system. Suggestions for

enhancements are found in Ch. 9.

4.2 Implemented Environment

In the current environment a user controls the analog computer in the following way:

• The user draws a block diagram in Matlab’s Simulink. Simulink creates a model

file, with the “.mdl” file extension.

• Matlab programs interpret the “.mdl” file that Simulink produces and generate

the necessary programming parameters for the analog computer.

• Matlab programs, via a data acquisition card and some interface circuits on a

PCB, program the connectivity and various parameters of the analog blocks.

• The data acquisition card generates inputs and measures outputs for the chip.

• Matlab programs display the results.

A user selects blocks from a separate Analog Computer Library, which have the

necessary options to properly configure the analog computer’s blocks. Additionally,

they have the necessary behavioural workings to allow them to be used in Simulink

simulations. This is useful for the purpose of characterizing the chip, since a user

can draw a block diagram, simulate it using both Simulink and the analog computer,

and compare the results. To enable the simulation in Simulink, the Sum block must

be used to perform addition rather than simply connecting outputs together, since



102

Simulink happens to correspond closely to a voltage-mode representation. To allow

the simulation on the AC, the user (at present) must explicitly use the Fanout block to

enable the output of one block to be connected to the inputs of multiple blocks. Each

Simulink block is mapped to its on-chip counterpart through its instance number.

The instances are enumerated in the following fashion:

• If there are N blocks of a particular type of block in each macroblock, the mac-

roblock in the top, left (0th row and 0th column) of the chip contains instances

0 to N − 1.

• Column indices increase moving from the left side of the chip to the right side.

• Row indices increase moving from the top side of the chip to the bottom.

• Block instances are counted by moving across the row before moving to the next

row.

For example, Fanout120 (there are 10 Fanout blocks per macroblock) is the

0th Fanout block in the macroblock in the 3rd row and 0th column (bottom, left

macroblock).

Matlab programs generate the necessary bit stream to program the connectivity

of the blocks and the parameters within each block. They remove the Sum blocks,

which are unnecessary on the AC owing to the circuits being current-mode.

The data acquisition card is a National Instruments PCI-MIO-16E-1. It allows

for a maximum of 8 differential inputs with 12-bit resolution, 2 analog, single-ended
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outputs with 12-bit resolution and 8 digital I/Os. Input sampling occurs at a max-

imum rate of 1.25 MSamples/s. However, the per-channel rate is, at most, 1.25

MSample/s divided by the number of active channels. When multiple input channels

are active, sampling takes place in a round-robin fashion, meaning that samples are

taken from each channel consecutively. Output sampling occurs at 1 MSamples/s

on both channels, synchronously. The card is connected to the chip’s printed circuit

board (PCB) via a 68-pin cable.

The small number of digital outputs (8) of the data acquisition card, and

the large number of digital inputs of the chip (> 32) requires the use of a serial to

parallel interface, consisting of several off-chip serial-in, parallel-out shift registers.

Digital data (a < 1 : 15 >, d < 0 : 15 >, RST , WR EN) are clocked into the shift

register chain. The data acquisition card’s digital outputs are used for the following:

• DATA IN : This is the data input for the shift register.

• C: This is the clock for the shift register.

• a < 0 >: This is the a < 0 > signal for the chip’s block memory. See Chapter 3.

• CLK: This is the clock signal for on-chip memory.

• S IN and S OUT . The signal for the offset cancellation scheme in the integra-

tor is actually composed of two signals, one of which controls M3 and the other

which controls M4 in Fig. 3.4.

• CAP CON : Reset signal for the integrators.
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• CON INP : Signal to connect outputs of blocks, other than integrators, to the

switch grids.

The signal SIM is controlled by one of the data acquisition card’s analog out-

puts. This is because it is important to ensure proper synchronization between SIM

and the other analog output VIN which serves as the forcing function for the system

being simulated. Typical waveforms for the control signals are found in Fig. 3.36.
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Figure 4.1: Transconductor circuit for generating analog inputs.

The chip’s PCB has eight LM13700 transconductor chips, which each have two

differential-in single-ended-out transconductors. The outputs of each pair of transcon-

ductors is connected to an input port of the chip. The input to the transconductor-pair

can be connected to VIN , to ground, or left open (Fig. 4.1). Variable resistors allow

the offsets of the transconductors to be manually canceled.
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The two polarities of output current from seven output ports are converted to

voltages by LM359 operational amplifiers with resistive feedback, acting as transresis-

tance amplifiers. Seven inputs of the data acquisition card measure these differential

voltages. The 8th input of the card can measure the output current of a block’s DAC

when it is routed off-chip.

4.2.1 Calibration

Before a simulation has been run with a particular chip, the time constants of in-

tegrators and the gains of VGAs are measured for each integrator and VGA for a

finely spaced sequence of DAC settings, and the results are stored for future recall in

look-up tables. When a simulation is run, the gains of VGAs and the time constants

of integrators are set. When a particular gain or time constant is programmed, the

appropriate DAC setting is selected by interpolating between the values stored in

the look-up table. It was noted in Chapter 3 that the DACs were designed to be

non-monotonic. However, the amount by which the series transistors were scaled in-

troduces non-monotonicity only every 8 levels. For example, the DAC’s current may

be smaller for word 32 than 31, but its output increases monotonically between 32

and 39. For this reason, the behaviour for the VGAs and integrators was measured

for DAC words in the sequence 7, 8, 15, 16, 23, 24 . . . . . Algorithms assume

that both the τ of integrators and the gain of VGAs are linear over the 7 bit range

between consecutive entries in the look-up tables.

The multiplication constants of the multipliers is measured during calibration.
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When a multiplier block is instantiated in a Simulink model, its multiplication con-

stant is included in the model, allowing a user to correct for it. That is, if a user

wants a multiplier that implements y = x1∗x2 but the instantiated model implements

y = 1
2
(x1 ∗ x2) the Simulink block will indicate this allowing the user to follow the

multiplier by a VGA with a gain of 2.
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Chapter 5

Circuit Measurements

5.1 Integrator

5.1.1 Measurement Set-up

The various configurations used to test the integrators are shown in Fig. 5.1. These

diagrams are drawn taking into account that the blocks are current-mode. Therefore,

the connection of two lines at the input of a block indicates that two signals are added

and applied to the input. For example, in set-up E an output of F1 and an output

of F2 are added and applied to the input of the integrator under test (IUT). The “-”

sign below the feedback path in set-ups C, E and F indicates that the connection was

made with negative polarity. That is, in set-up E, the output of F2 is inverted before

being added to the output of F1. Because the blocks are current-mode, the input of

the IUT in set-up B is not floating; it has a signal of 0 applied to it, analogous to

a voltage mode input being grounded. Blocks ADC and DAC are part of the data



108

���

����

���

���

����

	

���

���

���

����

	� 	

�
 ���

���

���

����

���	� 	

�
 ���

���

��� ���

���

��������

��������

��������

��������

�

�

�

�

�

���

�

���

����

	

���

���

���

����

���	� 	

�
 ���

���
��	

�������� �������	

��

�

���

�

Figure 5.1: Test set-up for measuring Integrator blocks.

acquisition card used in the test set-up. Transresistance amplifiers (TRA) are needed

because the ADC measures voltage while the chip’s output signals are currents. The

circuits on chip are all differential, meaning that there are actually two TRAs and

the ADC measures the difference between their two outputs. Similarly, there are

two transconductors connected to the DAC, applying opposite currents to the blocks

on-chip. For simplicity, the blocks are drawn in single-ended fashion.

Blocks F1 and F2 are fanout blocks. F2 is needed to connect the IUT in

feedback. The input of F1 and F2’s middle output are set on the high range. The

middle output of F1 and input of F2 are set on the same range as the integrator. In

set-ups C and E the bottom output of F2 is set on the same range as the IUT while

in set-up F it is set on the high range. The bottom output of F1 is set on the high
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range. This scheme allows the integrator to be tested over its different signal ranges,

while the test equipment always applies and measures large signals corresponding to

the high range. This is important because the off-chip capacitances are larger than

those on chip. Loading the input of a block with such a large capacitance can slow

the block’s response when the input is set to one of the lower signal ranges, owing to

the larger input resistance of the block on a lower signal range. An explanation of

each type of measurement follows.

Offsets
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Figure 5.2: Integrator with an input offset.

Fig. 5.2 shows a model of an integrator with an input offset, IOFFSET,IN . When

iIN(t) = 0, and the output of the integrator is set to zero at t = 0, the output will
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behave in the following fashion:

iOUT (t) =
t

τ
IOFFSET,IN (5.1)

where τ is the time constant of the integrator as defined in Sect. 3.3.2. When the

output of the integrator is measured using set-up B, VOB behaves as follows:

VOB(t) =
tRAF2

τ
IOFFSET,IN (5.2)

where AF2 is the gain of F2 from input to its middle output. The input offset can

be calculated from Eq. 5.2 by differentiating with respect to time and solving for

IOFFSET,IN , giving:

IOFFSET,IN =
dVOB

dt

τ

RAF2

(5.3)

The offset was measured when the integrator’s offset cancellation scheme was

used and when it was not. A line was fit to the measured output of the integrator

over an interval of time following the connection of the integrator’s output to the

measurement set-up. The slope of this line was interpreted as an average value for

dVOB

dt
.

Table 5.1 shows results for the input offset of the integrator when the integra-

tor’s offset cancellation scheme was used and when it was not used. The three columns

of data correspond to measurements of the integrator over its three input/output sig-

nal ranges. The numbers reported are the root mean squared average of the offsets

of the integrators on one chip.
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Figure 5.3: Integrator with finite DC gain.

DC Gain

When a step input of height u is applied to the input of an ideal, open loop integrator,

the integrator’s output will be a ramp (iOUT = t
τ
u). However, most real integrators

are modeled by the diagram in Fig. 5.3, where the gain g (g ¿ 1) models loss in the

integrator. This system, from input to output has a transfer function given by:

H(s) =
1

g


 1

sτ
g

+ 1


 (5.4)

In steady state this has a gain of H(0) = 1
g
. Frequently 1

g
is referred to as the DC

gain of the integrator. In theory one could measure the DC gain of the integrator

by exciting an open loop integrator by a very small step input (small enough that u
g

is less than the output limit of the integrator) and measuring the output. However,
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open loop integrators are difficult to measure, since the input referred offset will also

induce an output. Instead a combination of set-up E and F are used. Recall that
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Figure 5.4: Integrator with finite DC gain connected in unity-gain negative feedback.

the DC gain is the steady-state ratio of the output of the integrator to the input

of the integrator. This ratio can be measured whether or not the integrator is in

open loop. Fig. 5.4 shows a simplified block diagram of set-ups E and F when the

integrator is set to be on the high signal range, meaning that F1 and F2 have unity

gain. The main difference between set-ups E and F is the quantity routed off-chip for

measurement. In set-up E, iout is measured whereas in set-up F, iin is measured. The

transfer function from iTEST to iOUT , HCL−LP (the quantity measurable in set-up E),

is given by:

HCL−LP (s) =
1

sτ + 1 + g
(5.5)



113

The subscript CL-LP is used because this is the low-pass transfer function of the

closed loop system. The DC gain of HCL−LP is 1
1+g

. The transfer function from

iTEST to iIN , HCL−HP (the quantity measurable in set-up F), is given by:

HCL−HP (s) =
sτ + g

sτ + 1 + g
(5.6)

The subscript CL-HP is used because this is the high-pass transfer function of the

closed loop system, the DC gain of which is g
1+g

. If a step of height of u is applied to

both of set-ups E and F, the steady-state output of set-up E will be u 1
1+g

while the

output of set-up F will be u g
1+g

. A ratio of the steady-state outputs is 1
g
, the DC gain

of the integrator. In terms of the output voltages of the set-ups this ratio is expressed

as:

ADC =
VOE(tf )− VOE(t−0 )

VOF (tf )− VOF (t−0 )
(5.7)

where both set-ups E and F are excited by steps of equal height at t0. t−0 denotes

a time shortly before t0. tf denotes the time at which the output voltages can be

assumed to be sufficiently close to their steady-state values.

Some of the integrators were measured to have a negative DC gain. This

comes from the loss term g being negative. For active-RC integrators, the DC gain is

a large positive number stemming from the finite gain of the opamp. In the case of

the integrator used in the AC, the finite DC gain stems from non-zero conductances

that are in parallel with the integration capacitors, and mismatch within the pairs

of current mirror devices M19/M20 and M20/M21 (Fig. 3.5). In the event that the

mirror’s gain is greater than unity, the integrator is modeled with g < 0. To maintain
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a steady-state positive output in set-up F, a small negative input current must be

applied to the input of the integrator, meaning that the numerator of Eq. 5.7 is

negative. This leads to the calculation of a negative DC gain. This, however, does

not mean that the output of an open loop integrator, when the input is excited by a

very small step input, will reach a steady state of some large negative output, as the

term “negative DC gain” would imply. In openloop, there is no negative feedback to

offset the small amount positive feedback, and the system is unstable. When a small

step is applied the integrator’s output grows exponentially in the positive direction

until it saturates.

Table 5.1 reports the smallest magnitude of DC gain (min(|ADC |)) for each

signal range on the chip that was tested. In addition, it reports a type of average

in the row labeled µ(|ADC |). This is intended to represent the average DC gain.

However, it is inappropriate to take a simple arithmetic mean of the DC gains of all

of the integrators. In the event that the current mirrors (M19/M20 and M21/M22) of

one integrator had ratios such that they perfectly canceled the losses of the integrator,

the integrator would have infinite DC gain, and the average of this integrator with

all of the others would also be infinite. DC gain measurements serve to characterize

the size of the loss term g. We express it as the reciprocal of g, namely DC gain,

because DC gain is more intuitive to circuit designers. Ultimately we are interested

in a measure of the average size of the absolute value of this loss term, but expressed

as a DC Gain. As such, it was decided that a better way to combine DC gains is

to take an average of the reciprocals of the DC gains, and invert this average. This
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result is recorded in the table.

Noise

The mean squared value of VOA was subtracted from the mean squared value of

VOC to compute the mean squared output noise voltage. This was converted to a

mean squared current by dividing it by R2 to get the mean squared output noise

current. The noise of the integrator was measured in a feedback configuration, in

part, because it is difficult to take open loop measurements. Also, in many simulations

the integrator will have feedback around it. As stated in Ch. 3 the output noise of

an integrator is highly configuration-dependent. In this configuration some of the

integrator’s low frequency output noise is canceled by the feedback. In feedback, the

input referred noise of the integrator is processed by the transfer function HCL(s) =

1
τs+1

whereas in open loop, the input noise is processed by the transfer function of

the integrator alone, HOL(s) = 1
τs

. The latter transfer function has more gain at

frequencies below f = 1
2πτ

.

The output noise in set-up C includes noise from F2, while the noise in set-up

A does not. For some initial measurements the output noise of set-up A in Fig. 5.6

was subtracted from the noise in set-up C. In some instances, the calculated noise was

negative, meaning that the addition of the integrator and feedback path reduced the

overall noise of the system. This is possible since the input noise of F2 is reduced by

the loop gain of the system, which for low frequencies is high. Also, the connection of

the output of the IUT to the input of F2 loads the input of F2 by the capacitance of
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long connection wires, which filter the input referred noise of F2 at higher frequencies.

This filtering is more pronounced when the input range of F2 is on the smallest range,

which is the scenario that gave negative noise.

In response to the measurement of negative noise, it was decided that the total

noise of the integrator and F2 would be reported, but referred to the output of the

integrator by scaling the mean squared current by 1
A2

F2

.

Table 5.1 reports the integrators’ output referred RMS noise averaged across

the integrators on the chip, averaged in an RMS fashion.

Nonlinearity

For any linear system, if the input u results in the output y, then the input 2u results

in the output 2y. If the output of a nonlinear system when 2u is the input is ŷ,

the nonlinearity of the system will be based on the difference between ŷ and 2y.

This statement is vague because many different calculations are possible. In some

initial measurements of the integrator, a staircase function (Fig. 5.7) was applied to

set-up E, with constant input levels lasting long enough that the integrator would

reach steady state. The output voltage for the sections of the treads (level sections)

during which the output can be considered to be equal to the steady-state value were

averaged to produce a series of points. A line was fit to these average values and the

nonlinearity of the system was inferred by the RMS deviation of the averaged points

from the straight line. However, the integrator itself could be woefully nonlinear but

the loop gain of the system would mask it.
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Instead, the nonlinearity of the system must be examined during a transient.

To do this, the output of set-up E was measured for steps of two different heights, one

twice the other. If the system were perfectly linear, the step response for the larger

step would be exactly twice that of the smaller step. In other words, if a step of u

led to the output y1 and a step of out 2u led to y2, the nonlinearity of the system is:

δy = y2 − 2y1 (5.8)

over some interval of time. For this measurement, the two steps were compared over

the interval of time during which the output of the system was between 10 % and

90 % of its final value. In terms of the quantities in Fig. 5.1 the nonlinearity of the

system, ierr(t) is given by:

ierr(t) =
VOE(t)|L − 2VOE(t)|S

R
(5.9)

The subscript L denotes the output for the larger step input, while S denotes the

output for the half-sized step input. The mean squared nonlinearity was calculated

by the following:

i2NL =
1

A2
F2

(i2err(t)−
V 2

OE(tf −∆t, tf )|L + 4V 2
OE(tf −∆t, tf )|S

R2
) (5.10)

Scaling by 1
A2

F2

converts the measured mean squared output current from the set-up

E to a mean squared current at output of the IUT. Eq. 5.10 is more complicated than

simply scaling i2err because ierr contains the effects of noise, in addition to nonlinearity.

Even if the system were perfectly linear, ierr 6= 0 because the two measurements at

the output of set-up E would contain noise and hence a perfectly linear system would
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appear nonlinear if the mean-squared value of ierr were reported. To account for this,

typical values for the block’s output noise is subtracted. The second term in Eq. 5.10

(fraction over R2) represents the total noise of the outputs from each of the two

measurements over an interval of time during which the output has reached steady-

state. This measurement appears in the table as “RMS Nonlinearity”. This row of

the table represents the results for each integrator combined in an RMS fashion.

Time constant (τ)

µ(τ) is the mean of τ for all integrators on the chip, when the DAC is set to 512.

σ(τ) is the standard deviation of the measured τ across the integrators on the chip.

The integrator-to-integrator matching of τ is not important since each integrator’s

behaviour is measured, and individually programmed when a simulation is run. The

time constant of the step response of set-up D was subtracted from the time constant

of the step response of set-up E to compute the reported time constant.

5.1.2 Results

Measured results for a chip are summarized in the Table 5.1. The three numeric

columns report results for three different signal ranges.

DAC Characteristic

Fig. 5.5 shows the τ Vs. DAC tuning word for a typical integrator. The non-

monotonicity of the DAC is clearly visible in the discontinuities of the curve.
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Signal Range: 20 µA 1 µA 100 nA

IOFFSET,IN , with cancellation (nA) 7.3 0.21 0.017

IOFFSET,IN , without cancellation (nA) 150 7.4 1.8

min(|ADC |) 132 107 102

µ(|ADC |) 476 425 422

RMS Noise, nA, nA, nA 14.3 0.76 0.072

RMS NonLinearity (nA) 10.8 2.87 0.62

µ(τ), µs 28.3 28.0 26.4

σ(τ), µs 0.61 0.64 0.57

Table 5.1: Measured results for the integrator block.

5.2 VGA/2-Input Multipliers Blocks Measured in

VGA Mode

5.2.1 Measurement Set-Up and Definitions of Reported Quan-

tities

The various configurations used to test the VGAs are shown in Fig. 5.6. The amplifier

under test is denoted by the block labeled “AUT”. The input range of F2 and the

output range of F1 are set to be the same range as the output range of the AUT and

the input range of the AUT, respectively. The input of F1 and the output of F2 are

on the high range.

For many of the tests, a stair-case input function was applied to the chain

(Fig. 5.7). Each tread of the function was long enough that the circuit was considered

to be in steady-state for the majority of the tread. The output of the circuit was
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Figure 5.5: Typical τ Vs. DAC tuning word.

averaged over most of each tread to compute a set of average values, shown with *

signs. A best fit line was fit to this set of average values using a least-squares fit,

shown by the upward sloping straightline.

Results for the VGA are summarized in the Tables 5.2, 5.3, and 5.4. The

column labeled “Range” refers to the input and output range settings of the block.

The first letter denotes the input range and the second letter denotes the output

range. “h” refers to the largest signal range (20 µA), “m” to the middle range (1

µA) and “l” to the smallest signal range (100 nA). The column “DAC” refers to the

setting of the 10-bit DAC that controls the gain of the block. The other columns are
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Figure 5.6: Test set-up for measuring VGA blocks.

explained below.

Gain

The gain measurement is done by computing the slope of the input-output transfer

characteristic (using the staircase function) of set-up D (Fig. 5.6) and comparing this

slope to that of set-up C. µ(K) is the arithmetic mean of the gain for all VGAs on the

chip for the particular combination of range and DAC settings. σ(K)
µ(K)

is the standard

deviation of the gain normalized to the average gain over all of the VGAs on the chip.

Nonlinearity

The nonlinearity of the amplifier reported in the tables is the RMS deviation of the

actual input-output transfer characteristic of set-up D (average values of the treads,

computed using the staircase input) from a linear fit of the characteristic. NL FS

(denoting nonlinearity, full-scale) and NL HS (denoting nonlinearity, half-scale) are
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Figure 5.7: Technique for determining the slope of input-output characteristics.

the RMS deviation of the measured characteristic of the amplifier over 80 % and

40 % of its input range, respectively, from a linear fit. The reported numbers are

normalized to a full scale input.

Offset

The output offset of the amplifier is the difference between the average value of VOB

and VOA, divided by the product of R and the gain of F2. µ(OOS) is the arithmetic

mean of the input offsets for all gains on the chip. This indicates a deterministic shift

in the input-output characteristic of the block.
√

µ(O2
OS) is the root-mean squared
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Range DAC Input µ(K) σ(K)
µ(K)

µ(OOS)
√

µ(O2
OS) NL FS NL HS Noise

(in/out) (A/A) (%) (nA) (nA) (%) (%) (nA)

h/h 127 1.00 2.3 -94.7 219 0.020 0.019 14.9

h/h 255 1.74 1.9 -97.2 209 0.019 0.018 14.0

h/h 511 2.78 2.5 -104 210 0.19 0.032 13.7

h/m 127 0.053 2.5 -36.3 222 0.022 0.019 13.0

h/m 255 0.092 2.1 -32.2 209 0.020 0.017 10.8

h/m 511 0.155 1.8 -31.9 203 0.020 0.017 9.29

Table 5.2: Measured results for the VGA block. Largest input range.

Range DAC Input µ(K) σ(K)
µ(K)

µ(OOS)
√

µ(O2
OS) NL FS NL HS Noise

(in/out) (A/A) (%) (nA) (nA) (%) (%) (nA)

m/h 127 19.7 2.31 -7.6 13 0.049 0.053 0.92

m/h 255 34.3 1.96 -7.9 12 0.049 0.053 0.90

m/h 511 55.8 2.53 -8.2 12 0.16 0.061 0.92

m/m 127 1.01 2.39 -3.1 12 0.050 0.052 0.79

m/m 255 1.76 2.04 -3.5 11 0.049 0.050 0.69

m/m 511 2.99 1.83 -3.9 11 0.049 0.049 0.63

m/l 127 0.104 2.78 -3.5 14 0.049 0.050 0.42

m/l 255 0.181 2.30 -3.9 13 0.048 0.048 0.35

m/l 511 0.307 1.91 -4.2 12 0.050 0.048 0.30

Table 5.3: Measured results for the VGA Block. Middle input range.

input offset for all gains on the chip.

Noise

The output noise is computed by subtracting the mean squared value of VOA from

the mean squared value of VOB. The voltage noise is converted to an input referred

current noise by dividing it by R2, A2
F2

, and A2
AUT . The Noise column in the table is

the input referred RMS noise of the VGAs.
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Range DAC Input µ(K) σ(K)
µ(K)

µ(OOS)
√

µ(O2
OS) NL FS NL HS Noise

(in/out) (A/A) (%) (nA) (nA) (%) (%) (nA)

l/h 127 190 3.8 -1.9 2.5 0.053 0.053 0.12

l/h 255 335 2.9 -2.0 2.5 0.053 0.052 0.15

l/h 511 542 3.5 -2.0 2.6 0.22 0.072 0.18

l/m 127 9.69 3.9 -1.6 2.3 0.053 0.055 0.10

l/m 255 17.1 2.9 -1.6 2.3 0.052 0.054 0.098

l/m 511 29.3 2.3 -1.7 2.3 0.054 0.053 0.094

l/l 127 0.987 4.1 -1.5 2.2 0.053 0.054 0.057

l/l 255 1.74 3.1 -1.6 2.3 0.052 0.053 0.051

l/l 511 2.99 2.4 -1.7 2.3 0.054 0.053 0.047

Table 5.4: Measured results for the VGA block. Smallest input range.

5.2.2 Results

Measured results for the VGA are found in Tables 5.2, 5.3, and 5.4.

5.3 VGA/2-Input Multiplier Blocks Measured in

Multiplier Mode

5.3.1 Measurement Set-up and Definitions of Reported Quan-

tities

Fig. 5.8 shows various measurement set-ups for characterizing the multiplier blocks.

The multiplier under test is denoted by the block labeled “MUT”. An ideal multiplier
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Figure 5.8: Test set-up for measuring Multiplier blocks.

implements the following input-output behaviour:

i+o − i−o = K(i+1 − i−1 )(i+2 − i−2 ) (5.11)

where K has units of A−1, i1 and i2 are differential input currents and io is a differential

output current. Due to mismatch between devices and noise, a real multiplier may

implement the following:

i+o − i−o = K(i+1 − i−1 + ioff1)(i
+
2 − i−2 + ioff2) + ioffO + in(t) (5.12)

where ioff1, ioff2 and ioffO are offset currents at the input of port 1, the input of port

2 and the output, respectively. The term in(t) is an output referred noise current.

Eq. 5.12 is a simplified model of a real multiplier, which may have signal depended

noise and may implement a higher order polynomial function. The following sections
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discuss the measurement of the multiplication coefficient (K), the offset currents and

the output referred noise.

The reported measurements for the multiplier block, in Table 5.5, are for a

DAC setting of 300.

Multiplication Constant

The measurement of the multiplier is limited by the fact that the data acquisition

system has only one free output. To determine K in Eq. 5.12 the same input signal was

applied to both inputs and the multipliers behaviour as a squarer was measured. Two

outputs of F1 (in set-up E) were each connected to the two inputs of the multiplier

with both positive and negative polarity for a total of four input combinations. That

is, each connection has two possibilities for its polarity meaning that there are four

ways to make the two connections. For each combination the system was excited

by the staircase function. A second-order polynomial was fit to the level sections’

average values, leading to four different polynomials. The four second-order terms

were averaged to give one value for K for the multiplier for a particular combination

of input range, output range and DAC setting.

In Table 5.5 µ(K) is the arithmetic mean of the multiplication constants across

the chip. σ(K)
µ(K)

is the standard deviation of the multiplication normalized to its mean

for the multipliers across one chip.
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Offsets

As Eq. 5.12 shows, the inputs and output each have offsets. The output offset of

the multiplier is the difference between the DC output voltage in set-up B and that

in set-up A, divided by R and the gain of F2. The input offset of the lower input is

computed by comparing the slope of the input-output transfer characteristic in set-up

D to that in set-up C. To determine the offset of the upper input, a similar procedure

is used, but with F1 connected to the lower input. In Table 5.5, µ(OOS), µ(IOS1),

and µ(IOS2) are the arithmetic means for the given offsets.
√

µ(O2
OS),

√
µ(I2

OS1), and

√
µ(I2

OS2) are the root mean squared offsets for each port.

Noise

The output mean-squared current noise is the difference between the mean squared

values of VOB and VOA, scaled by R2 and by A2
F2

. Table 5.5 reports the root mean-

squared current noise.

5.3.2 Results

Measurement results for one chip are summarized in Table 5.5.
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Range µ(K) σ(K)
µ(K)

µ(OOS)
√

µ(O2
OS) µ(IOS1)

√
µ(I2

OS1)

(In & Out) (MA−1) (%) (nA) (nA) (nA) (nA)

h 0.08 2.07 -26.0 225 89.3 183

m 1.70 2.65 -9.14 16.5 6.98 10.7

l 17.0 2.54 -0.87 2.23 1.58 2.09

Range µ(IOS2)
√

µ(I2
OS2) Noise

(In & Out) (nA) (nA) (nA)

h 52.1 168 19.6

m 5.85 10.3 1.02

l 1.62 2.29 0.08

Table 5.5: Measured results for the Multiplier block.

5.4 Fanout

5.4.1 Measurement Set-up and Definitions of Reported Quan-

tities

Various test configurations are shown in Fig. 5.9. The fanout under test (FUT) was

preceded and followed by fanout blocks (Fig. 5.9) whose ranges were selected in the

following way: F1’s input was set on its high range. Its output range was set to be

the same as the input range of the FUT . F2’s input range was set to be equal to

the output range of the FUT , while F2’s output range was set to be high. Table 5.6

summarizes the measurements of the Fanout blocks. The first column of Table 5.6

gives the input and output ranges of the block. “h” denotes the largest signal range

(9 or 18 µA), “m” denotes the middle signal range (1 or 2 µA) and “l” denotes the

smallest signal range (111 or 222 nA).
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Figure 5.9: Test set-up for measuring Fanout blocks.

Output Offsets

The offsets reported are the output offsets for each output of each fanout block,

computed by subtracting the average value of VOB from VOA. This DC voltage was

converted to a DC current by dividing it by R, and dividing it by the gain of F2. The

numbers in the left “Op. Offset” column are the RMS output offsets over all fanout

outputs across the chip. The right “Op. Offset” column shows the output offsets

normalized to the output signal range.

Noise

The mean squared value of VOB was subtracted from the mean squared value of VOA.

To compute the RMS output noise current of the fanout, the square root of the
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difference was divided by the gain of F2 and by R. The reported numbers are for the

output referred RMS noise current.

Gain

For this, and other specifications, the stair case function was applied to set-up D and

to set-up C. The gain of the fanout is the ratio of the slope of the best fit line for

set-up D to the slope of the line measured using set-up C. The numbers in the “Gain”

column are the averages over the three paths for each fanout and over the chip. “RMS

Dev” refers to the standard deviation of the gains, normalized to the average gain.

Nonlinearity

The nonlinearity numbers reported are the RMS difference between the averages of

the treads and the line of best fit for an input that is 80 % of the fullscale range of

the FUT . RMS NL refers to the RMS nonlinearity referred to the input of the block.

The reported numbers in the left column are the RMS across all fanout outputs on

the chip, and the right RMS NL column has the results normalized to the input range.

Mismatch

This specification is a measure of the difference between the gain from the input of

the fanout to one of its outputs and the gain to another of its outputs. It is measured

using set-up E. Two outputs of a fanout block are subtracted from one another at

the input of F2. A stair-case input is applied to this arrangement, and matching is
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Range (in / out) Gain RMS Dev Op. Offset Op. Offset

name, (uA) / name, (uA) (A/A) (%) (nA) (%)

h, 18 / h, 18 1.00 0.18 132.73 0.74

m, 1 / m, 1 1.00 0.22 11.36 1.14

l, 0.111 / l, 0.111 1.00 0.23 1.26 1.14

h, 18 / m, 2 0.11 0.83 15.67 0.78

h, 18 / l, 0.222 0.01 0.85 11.93 5.37

m, 1 / h, 9 9.00 0.22 101.18 1.12

m, 1 / l, 0.111 0.11 0.61 1.64 1.48

l, 0.111 / h, 9 80.92 0.39 129.05 1.43

l, 0.111 / m, 1 9.01 0.24 13.32 1.33

Range (in / out) RMS NL RMS NL Mismatch Noise

name, (uA) / name, (uA) (nA) (x 1e-6) (%) (nA)

h, 18 / h, 18 4.76 264.34 0.22 1.07

m, 1 / m, 1 0.54 544.45 0.25 0.20

l, 0.111 / l, 0.111 0.06 537.64 0.26 0.03

h, 18 / m, 2 4.87 270.38 0.20 0.16

h, 18 / l, 0.222 11.33 629.67 0.24 0.00

m, 1 / h, 9 0.55 547.58 0.26 2.02

m, 1 / l, 0.111 0.52 523.92 0.26 0.01

l, 0.111 / h, 9 0.06 553.96 0.26 3.26

l, 0.111 / m, 1 0.06 557.97 0.24 0.35

Table 5.6: Measured results for the Fanout block.

the ratio of the slope the output’s best fit line to the slope of a similar line measured

with the same input at the output of set-up D.

5.4.2 Results

The results are summarized in Table 5.6.
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Figure 5.10: Test set-up for measuring Exponential blocks.

5.5 Exponential

Various configurations used to measure the exponential blocks are shown in Fig. 5.10.

A combination of set-ups A and B was used to compute the input-referred offset of

the chain of blocks consisting of the DAC, the transconductor (Gm) and F1 allowing

the offset to be cancelled. Set-up C was used to measure the input-output transfer

characteristic of the block. The purpose of measuring the exponential blocks is to

determine the degree to which they exhibit exponential input-output behaviour. An

ideal exponential block implements the following input-to-output characteristic:

i+o − i−o = 2I1 exp

(
i+in − i−in
IREF

)
(5.13)

The equation above is a modified version of Eq. 3.41. nφt

R
has been replaced by IREF .

The block’s transfer characteristic becomes the following when it has an input and

output offset current:

i+o − i−o = 2I1 exp

(
i+in − i−in + IIN

IREF

)
+ IO (5.14)
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where IIN and IO are the block’s input- and output-offset currents, respectively.

Eq. 5.14 can be written as the following:

i+o − i−o = 2I1 exp
(

IIN

IREF

)
exp

(
i+in − i−in
IREF

)
+ IO (5.15)

From Eq. 5.15 it is clear that the input-offset current modifies the transfer charac-

teristic only as an output, multiplicative scale factor exp IIN

IREF
while the output-offset

current deviates the transfer characteristic from exponential. In the measurements of

the blocks, an attempt was made to determine the size of the output offset current

so that it could be subtracted from measured results. This was done by measuring

the output in set-up C when a large negative input was applied, effectively eliminat-

ing the exponential term’s contribution to the output, leaving only an output due to

the output-offset current of the block. This offset was subtracted from the measured

output when smaller inputs were applied.

A typical exponential block’s input-to-output transfer characteristic is shown

in Fig. 5.11. The vertical axis has a logarithmic scaling. Deviation from exponential

was computed in the following fashion, assuming the measured data, with output

offset subtracted is a vector y:

• The base-10 logarithm of the output current was computed for each data point.

ylog = log10(y)

• A line was fit to these data using a least-squares technique over the range of

inputs from -4.3 µA to 6.0 µA. The points on the line will be denoted as yfit

• The deviation of the logarithm of the measured data from the fit line was
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Figure 5.11: A typical exponential block’s input-to-output transfer characteristic.
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computed (yratio = ylog− yfit). This corresponds to finding the logarithm of the

ratio of measured data to the fit line, since a difference in logarithm corresponds

to the logarithm of a ratio.

• The ratio was converted to a difference. yratio is the logarithm of a ratio. Hence,

10yratio is the ratio, in linear units, between the measured output and the fit

line. Ideally, this ratio would be equal to one. We are interested in quantifying

its difference from one. Therefore, we consider the error in the input-output

characteristic of the block to be: ydiff = abs(10yratio − 1).

• The reported error for the exponential block is the RMS average of ydiff

Fig. 5.12 shows the input-to-output transfer characteristics of all of the expo-

nential blocks from one chip.

Measured Deviation: The measured RMS deviation from exponential for

all exponential blocks from one chip was 2.6 %.

5.6 Logarithm

Various configurations used to measure the logarithm blocks are shown in Fig. 5.13.

A combination of set-ups A and B were used to compute the input-referred offset of

the chain of blocks consisting of the DAC, the transconductor (Gm) and F1 allowing

it to be cancelled. The input-output transfer characteristic was measured using set-

up C. The purpose of measuring the logarithm blocks is to determine the degree to

which they exhibit logarithmic input-output behaviour. An ideal logarithm block
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Figure 5.12: Exponential blocks’ input-to-output transfer characteristic from one
chip.
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Figure 5.13: Test set-up for measuring Logarithm blocks.
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implements the following input-to-output characteristic:

i+o − i−o = K log

(
i+in − i−in
IREF

)
(5.16)

The equation above is modified version of Eq. 3.42. Gmnφt has been replaced by K.

The block’s transfer characteristic becomes the following when it has an input and

output offset current:

i+o − i−o = K log

(
i+in − i−in + IIN

IREF

)
+ IO (5.17)

where IIN and IO are the block’s input and output offset currents, respectively.

Eq. 5.17 can be written as the following:

i+o − i−o = K log

(
10

IO
K

i+in − i−in + IIN

IREF

)
(5.18)

From Eq. 5.18 it is clear that the output-offset current modifies the transfer charac-

teristic only as an input, multiplicative scale factor 10
IO
K while the input-offset current

deviates the characteristic from logarithmic. In the measurements of the blocks, an

attempt was made to determine the size of the input offset current so that it could be

subtracted from the applied input to the circuit during actual measurements. When

i+in− i−in < IIN the output of the logarithmic block saturates to its maximum negative

output. IIN was estimated by finding the largest input for which the output was sat-

urated to this large negative output. This was done by gradually increasing i+in − i−in

from a negative value (larger than the expect IIN) until the output was not saturated

to the block’s negative maximum. The value causing the output to increase from the

block’s saturated output was taken to correspond to the input-offset current of the

block.
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Figure 5.14: A typical logarithm block’s input-to-output transfer characteristic.
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Figure 5.15: A typical programmable nonlinear block’s input-to-output transfer char-
acteristic when implementing the absolute value function.

A typical logarithm block’s input-to-output transfer characteristic is shown in

Fig. 5.14. The horizontal axis has a logarithmic scaling.

5.7 Programmable Nonlinear Blocks

This section shows some representative measurements of the programmable nonlinear

blocks. An attempt was made to eliminate the output offset of the circuits connected

to the input of the nonlinear block.

Fig. 5.15 shows the input-output transfer characteristic of a representative

programmable nonlinear block when it is implementing the absolute value function.

Fig. 5.16 shows the input-output transfer characteristic of a representative program-

mable nonlinear block when it is implementing the saturation function. The output

current to which this blocks saturates is programmable through a 10-bit DAC. This
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Figure 5.16: A typical programmable nonlinear block’s input-to-output transfer char-
acteristic when implementing the saturation function. Two different saturation levels
are shown.

figure shows results for two different saturation levels. Fig. 5.17 shows the input-

output transfer characteristic of a representative programmable nonlinear block when

it is implementing the sign function. The output current to which this blocks sat-

urates is programmable through a 10-bit DAC. This figure shows results for two

different saturation levels. Fig. 5.18 shows the input-output transfer characteristic

of a representative programmable nonlinear block when it is implementing the ramp

function. The definition of this function is found in Sect. 3.3.7. The point on the

x-axis at which block’s characteristic begins increasing is programmable through a

10-bit DAC. This figure shows results for five different break points.

Figs. 5.19 and 5.20 show the time-domain characteristic of a representative

programmable nonlinear block when it is implementing minimum and maximum func-

tions. Fig. 5.19 shows the block’s inputs (the ramp input is applied to input-port 1
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Figure 5.17: A typical programmable nonlinear block’s input-to-output transfer char-
acteristic when implementing the sign function. Two different output levels are shown.
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Figure 5.18: A typical programmable nonlinear block’s input-to-output transfer char-
acteristic when implementing the ramp function. Different break points shown.
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Figure 5.19: Inputs to a programmable nonlinear block.
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Figure 5.20: A typical programmable nonlinear block’s characteristic when imple-
menting the minimum and maximum functions. Outputs from the block.
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Figure 5.21: A typical programmable nonlinear block’s characteristic when imple-
menting the gate function.

and the sinusoid is applied to input-port 2). Fig. 5.20 shows the outputs of the block.

The lower portion of Fig. 5.20 shows a square wave that indicates which input is

greater. That is, the output signal shown is high when the signal at port 1 is greater

than the signal at port 2. The upper portion of Fig. 5.20 shows the results of the

minimum and maximum operations. The thick line shows the maximum, while the

thin line shows the minimum of the block’s two inputs.

The right most peak of the sinusoid in Fig. 5.19 is greater than the ramp.

However, the circuit behaves as though the ramp is greater than the sinusoid’s peak.

This is due to one of the block’s input ports having an offset.

The remaining functions the programmable nonlinear blocks can implement

are: gate (or chopper), track-hold, and sample-hold. For these three functions, one of
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the inputs is processed by a current-mode comparator, comparing this input with a

current of 0 A. The output of this comparator determines when the chopper function

chops, when the track-hold function tracks and holds and when the sample-hold func-

tion samples and hold. The operation of these functions is described in more detail

in Sect. 3.3.7. The comparator to which the following paragraphs make reference is

this 0 A comparator.

Fig. 5.21 shows the time-domain characteristic of a representative program-

mable nonlinear block when it is implementing the gate function. The upper portion

of the figure shows the block’s input signal (ramp function) and the output of the

circuit’s “zero comparator”. The comparator’s output is high when the block’s other

input is greater than zero and low when the input is less than zero. The output in

the lower portion of Fig. 5.21 is equal to the input when the comparator’s output is

high and is equal to zero when the comparator’s output is low.

Fig 5.22 shows the time-domain characteristic of a representative program-

mable nonlinear block when it is implementing the track-hold function. The upper

portion of the figure shows the block’s input signal (ramp function) and the output

of the circuit’s comparator. The output in the lower portion of Fig. 5.22 is equal to

the input when the comparator’s output is high and is held when the comparator’s

output is low.

Fig 5.23 shows a representative time-domain characteristic of the program-

mable nonlinear block when it is implementing the sample-hold function. The upper

portion of the figure shows the block’s input signal (ramp function) and the output
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Figure 5.22: A typical programmable nonlinear block’s characteristic when imple-
menting the track-hold function.
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Figure 5.23: A typical programmable nonlinear block’s characteristic when imple-
menting the sample-hold function.



146

of the circuit’s comparator, described above. The output in the lower portion of

Fig. 5.23 is equal to zero when the comparator’s output is high. The input is sampled

when the comparator’s output falls. The sample is held until the comparator’s output

rises.

5.8 Switches and Memory

As described in Chapt. 3, a design flaw that went undetected during simulation leaves

7 SRAM cells connected to each block’s input unprogrammable. If one or more of the

switches powers up in the ON state, that block’s input is shorted to ground, rendering

that block useless.

In initial measurements approximately 25% of blocks suffered this fate, which

is far less than the 127
128

fraction of blocks that would fail if the state of the cell into

which it fell on power-up were a random process with equal likelihood. The chip

has 2.5 V and 3.3 V power supplies. Since the 3.3 V controls the digital I/O and

powers up the Vdd to which the electrostatic discharge (ESD) diodes are connected,

it was powered up first, followed by the 2.5 V supply. Both were powered on by

first connecting the supplies’ cables, with the supplies off and then activating the

supplies, with the sources already set to their appropriate voltages. By accident, the

2.5 V wires were once connected when the source was on. When this connection was

done “hot”, the vast majority of the blocks worked. The “hot” connection ramps up

the supply voltage on the chip more quickly than when the source is activated while
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connected to the chip. This faster slew on the supply resulted in more of the switches

powering up in the OFF state, leaving the vast majority of the blocks functional.

A double pole, single throw switch was put between the power supplies and

the chip’s PCB. This allows the supply voltages on the chip to be ramped up quickly

and simultaneously. With this scheme nearly all circuits are functional. Interestingly,

if many circuits’ inputs are shorted to ground, the current consumption of the chip

is higher, allowing a skilled user to observe this and power on the chip again until

a lower current consumption is observed. This is of course unsatisfactory for the

longterm utility of the chip.

As part of the calibration scheme, after the chip is powered on a routine mea-

sures the voltage at the input of every block, and determines whether the input has

been shorted to ground. If a block is not functional, the software keeps track of it, so

that a user cannot try to use it in a simulation. With such a large chip, even without

this design flaw, one would want the interface software to determine which blocks

meet specifications.

5.9 Power Dissipation

The chip, with all circuits active typically draws 100 to 120 mA from a 2.5 V supply

meaning that its power dissipation is typically between 250 and 300 mW.
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Chapter 6

Using the Analog Computer to

Obtain Fast, Approximate

Solutions

6.1 Solving Partial Differential Equations on the

Analog Computer Using the Method of Lines

The method of lines was introduced in Section 2.2.1 of Chapter 2.
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6.1.1 One-Dimensional Linear Diffusion Equation

The class of PDEs whose solution is discussed here is the one-dimensional diffusion

equation, given by:

α
∂2T

∂x2
= Ṫ (6.1)

where T (x, t) is a scalar function at a point x and time t. The coefficient α represents

a physical property of the material. Ṫ denotes the time derivative of T .

Physical Interpretation: The two most frequently discussed physical ex-

amples of this equation are heat flow and current flow. In the former, T is the

temperature along a uniform rod (Fig. 6.1), oriented in the x direction from 0 to L.

The parameter α is equal to k
C

where k is the material’s thermal conductivity and C

is the material’s specific heat capacity. It is assumed that heat flow is only in the x

direction. That is, the temperature across the rod in the y and z directions is uniform

and heat does not escape out the walls of the rod, except for possibly at the ends of

it, depending on the boundary conditions of the problem.

In the second physical manifestation of this equation, T is the voltage along a

uniform, distributed RC line and α is equal to 1
RC

, where R is the per unit length

resistance and C is the per unit length capacitance of the line.

Discussion of Spatial Discretization Technique - Preliminaries to AC So-

lution

In investigating the analog computer’s ability to solve the one-dimensional diffusion

equation, the following things were considered:
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• The accuracy of the solution for various numbers of discretization points.

• A comparison of two different spatial discretization techniques in terms of ac-

curacy and the largest system that the chip can simulate using each of the two

techniques.

• The effects on the overall solution accuracy of random errors in the coefficients

of the discretized system and the effects of deterministic errors.

1T
2T

3T
4T

5T
6T

7T
8T

9T ),(10 tLTT =

0=x

Lx =

),0(0 tTT =

x

h

Figure 6.1: Discretization of solid rod.

The following boundary conditions were used:

T (L, t) = 0, −∞ < t < ∞ (6.2)

T (0, t) = 0, t < 0 (6.3)

T (0, t) = 1, t ≥ 0 (6.4)

When the spatial partial derivative is approximated by the Forward and Backward

Euler combination in Eq. 2.18, the following set of ODEs results:

Ṫ = AET + bET0 (6.5)
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The subscript E is used to denote that these are the terms associated with

the Euler approximation for the spatial partial derivative. T0 is equal to T (0, t). T

is a vector of temperatures of length n, (T1, T2,. . . ., Tn−1, Tn ) where Ti is the

temperature at the ith cross-section of the rod. The rod extends from cross-section

0 to cross-section n + 1, meaning that there are n + 1 steps from x = 0 to x = L.

Therefore, the distance between consecutive cross-sections, h, is L
n+1

. The n × n

matrix AE is given by:

AE =
α

h2




−2 1 0 · · · · · · · · · 0

1 −2 1
. . .

...

0 1 −2
. . . . . .

...

...
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

...
. . . 1 −2 1

0 · · · · · · · · · 0 1 −2




(6.6)

The length n column vector, bE, can be written as:

bE =
α

h2
[1, 0, 0, · · · , 0]T (6.7)

where T denotes the transpose operation. According to Eq. 2.18, Ṫn depends on Tn+1,

which does not appear in Eq. 6.5, since Tn+1 = T (x, L) = 0, as stated in Eq. 6.2.

For the Central Differences approximation, the time derivative at Ti is a func-

tion of Ti−2, Ti, and Ti+2. This requires that the temperatures at T0 and Tn+1 be spec-
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ified, as well as at T−1 and Tn+2. The simplest approach is to choose T−1 = T0 = 1,

for t ≥ 1 and Tn+2 = Tn+1 = 0 for −∞ < t < ∞. Physically, this would correspond

to there being portions of the rod extending beyond x = 0 and x = L, which are held

at the same temperature as x = 0 and x = 1, respectively. When the spatial partial

is approximated by using Central Differences twice (Eq. 2.19) and the assumptions

above for T−1 and Tn+2 are made, the following set of ODEs results:

Ṫ = ACT + bC0T0 + bC1T−1 (6.8)

The subscript C is used to denote that these are the terms associated with the Central

Differences approximation for the spatial partials. T is a vector of temperatures of

length n, (T1, T2,. . . ., Tn−1, Tn ) where Ti is the temperature at the ith cross-section

along the rod. If Central Differences is used to approximate the partial at every point

along x, the n× n matrix AC is given by:

AC =
α

4h2




−2 0 1 0 · · · · · · 0

0 −2 0 1 0
...

1 0 −2 0 1
...

0
. . . . . . . . . . . . . . . 0

... 1 0 −2 0 1

... 1 0 −2 0

0 · · · · · · 0 1 0 −2




(6.9)
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The length n column vector, bC0, can be written as:

bC0 =
α

h2
[0, 1, 0, · · · , 0]T (6.10)

The length n column vector, bC1, can be written as:

bC1 =
α

h2
[1, 0, · · · , 0]T (6.11)

We expect that if the rod is uniform in shape and in physical properties the

temperature will reach a steady-state as t →∞ which will linearly decrease along the

length of rod from 1 C at x = 0 to 0 C at x = L when the boundary conditions in

Eq. 6.2 to Eq. 6.4 are applied. This steady-state temperature can be found by solving

Eq. 6.5 or Eq. 6.8 with the left side set to 0. That is, in steady-state, the temperature

does not change and hence the time derivative of temperature is zero. Rearranging

Eq. 6.5 when Ṫ = 0 gives:

TE,final = −AE
−1bET0 (6.12)

TE,final is the steady-state temperature when the Euler discretization is used. Like-

wise, rearranging Eq. 6.8 when Ṫ = 0 gives:

TC,final = −AC
−1(bC0T0 + bC1T−1) (6.13)

TC,final is the steady-state temperature when the Central Differences discretization is

used. Solutions of Eq. 6.12 in Matlab have shown that it gives the expected linearly

decreasing temperature as x increases; however, Eq. 6.13 does not. In the particular

case for n = 5, the Euler approximation gives:

TE,final = [0.833, 0.667, 0.500, 0.333, 0.167]T (6.14)
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whereas Central Differences gives:

TC,final = [0.750, 0.667, 0.500, 0.250, 0.167]T (6.15)

Many of the properties of the Central Differences technique, which will be discussed

later, can be retained, while forcing it to agree with the correct steady-state behaviour

by using the Euler approximation for the first and last nodes giving:

Ṫ = AC∗T + bC∗T0 (6.16)

The subscript C∗ is used to denote that these are the terms associated with the Central

Differences approximation for the spatial partial derivatives at all nodes except at T1

and Tn. The matrix AC∗ is given by:

AC∗ =
α

4h2




−8 4 0 0 · · · · · · 0

0 −2 0 1
...

1 0 −2 0 1
...

0
. . . . . . . . . . . . . . . 0

... 1 0 −2 0 1

... 1 0 −2 0

0 · · · · · · 0 0 4 −8




(6.17)

The top and bottom rows of AC∗ come from the use of the Euler approximation.

However, the rows have entries of 4 and 8 rather than 1 and 2, as is found in AE

because of the 4 in the denominator of the leading scaling factor in AC∗ . The length
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n column vector, b∗C, can be written as:

b∗C =
α

h2
[1, 1, 0, · · · , 0]T (6.18)

The steady-state temperature of this system of equations is given by:

TC∗,final = −AC∗
−1bC∗T0 (6.19)

which gives the correct steady-state temperature profile.

Under ideal circumstances, both the Euler and the modified Central Differences

approaches, when implemented on the analog computer, would accurately predict the

transient and steady-state response of the sets of ODEs. However, due to a variety of

nonidealities, neither will produce the exact answer. The degree to which the analog

computer’s solution differs from the exact answer is determined by the accuracy of

the circuits that implement the system and by the sensitivity of the system to those

inaccuracies. To investigate the sensitivity of the systems to inaccuracies in the

functional elements, the coefficients in the ODEs were varied and their effect on

the solution of Eq. 6.12 and Eq. 6.19 was examined. The approach taken for this

investigation is to change the coefficients in the ODEs and solve for the steady-state

temperature using Matlab. This gives a prediction of how these errors, if present

in the analog computer’s circuits, would change the analog computer’s steady-state

solution of the ODEs.

Fig. 6.2 shows steady-state temperature profiles from several randomly gener-

ated sets of ODEs resulting from the two discretizations. In the top section, each
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Figure 6.2: Steady-state temperature profiles for Central Differences (top) and Euler
(bottom) with randomized coefficients.

coefficient in AC∗ was scaled by a different sample of φ where:

φ = 1 + 0.002δ (6.20)

where δ is a random variable with uniform distribution over a range of (−
√

12
4

<

δ <
√

12
4

) giving it a standard deviation 1
2
. In the bottom section, coefficients of AE

were scaled in the same way and the resulting steady-state solutions were calculated.

Clearly, the modified Central Differences technique is less sensitive to these random

errors than the Euler technique.
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Figure 6.3: Steady-state temperature profiles for Euler discretization for n = 3, 9, 18
and 50. Coefficients scaled by 0.998 and 0.9982. The most bowed line corresponds to
n = 50 and the least bowed corresponds to n = 3.

When the ODEs are implemented on the analog computer, signals associated

with the off-diagonal 1s in the A matrix pass through two fanout blocks whereas the

signals associated with diagonal 2s pass through only one fanout block. To predict the

effect of a systemic error in the gain of fanout blocks (for example: G=0.998 instead

of 1.000), the off-diagonal elements were scaled by 0.9982 and on-diagonal elements by

0.998. Curves in Fig. 6.3 show the steady-state temperature profiles for systems with

systemic errors in the fanout gains, for different numbers of points, using the Euler

discretization. Superimposed on the line representing the steady-state temperature
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when n = 3 is the ideal curve for the steady-state temperature, assuming all gains are

correct (G = 1). Clearly, the larger the number of nodes into which the problem is

discretized, the larger the steady-state error, when the fanout blocks that implement

the coefficients have deterministic errors. The same can be said for the case when

the blocks have random errors, though some of there errors cancel each other out

resulting in smaller deviations from the ideal solution. These errors occur also for the

Central Differences case, though the errors in steady-state temperature are smaller.

As seen in Fig. 6.3, when n is large, the relative error in the steady-state solution is

much greater than the error in the coefficients of the differential equation.

The choice in spatial discretization technique determines the largest number of

nodes that can be simulated on this AC, and the availability of global wiring resources

for directing signals off-chip. The architecture of the chip is detailed in Chapter 3

and the testing environment is described in Chapter 5; however, some aspects critical

to this discussion are repeated here:

• There are 16 macroblocks in a 4×4 grid with 5 integrators and 10 fanout blocks

in each. (Fig. 3.1)

• Below each row of macroblocks are 16 pairs of wires for routing signals between

macroblocks and to off-chip.

• Beside each column of macroblocks are 16 pairs of wires for routing signals

between macroblocks and from off-chip.

• The current measurement set-up has the capability to measure only seven analog
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outputs at a time. These are connected to two outputs below the upper three

rows of macroblocks and one output below the lowest row of macroblocks.

To reduce the use of global wiring resources, the five integrators in a given macroblock

integrate the ODE for consecutive nodes along the rod. This corresponds to a mac-

roblock implementing five adjacent rows in the state-space description of the ODE,

that is a slice from Ti to Ti+4. The derivatives of this slice depend on Ti to Ti+4 as

well as Ti−1 and Ti+5, which means that each macroblock (with the exception of the

one implementing Tn) requires two global inputs, one from the macroblock imple-

menting the slice from Ti−5 to Ti−1 and one from the macroblock implementing the

slice from Ti+5 to Ti+9. Tn’s macroblock needs only one input since it is assumed that

Tn+1 = 0 Likewise, each macroblock (with the exception of the macroblocks imple-

ment macroblocks implementing Tn and T1) needs two global outputs to direct signals

to the macroblocks that implement adjacent slices in the ODE. The macroblocks im-

plementing Tn’s and T1’s ODE must each output only one signal to a neighbouring

macroblock, since the former two macroblocks represent the ends of the rod.

With each of the four macroblocks in each row needing two outputs, eight of

the horizontal global wires below the row of macroblocks are used, leaving eight for

output to off-chip. The same numbers apply to the vertical global wires. All 80

integrators can be used and 32 output ports can be used. However, in the present

test environment only 7 of the output ports can be measured, due to limits in the

data acquisition card used. Even without this limit, to measure all 80 state variables

would require that the system be simulated a few times consecutively, and that a
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subset of outputs be measured each time.

In the case of the modified Central Differences technique, each slice of 5 rows

in the ODE, implementing Ti to Ti+4 requires inputs from Ti−2, Ti−1, Ti+5 and Ti+6.

Therefore each macroblock needs four inputs and four outputs. This consumes suf-

ficient resources so at to preclude using every macroblock. At most, 13 macroblocks

can be used for a total of 65 state variables. This requires between 10 and 14 global

horizontal wires for each set of 16, leaving a total of 18 outputs available.

Approximating partial derivatives with differences is similar to the process

by which a distributed circuit is approximated by a lumped circuit. Fig. 6.4 shows
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Figure 6.4: Lumped circuit equivalents of the distributed RC line.

two such examples. The upper portion of the figure shows the lumped circuit that

corresponds to the Euler equations. The labels Vk denote the voltage at the kth node.

The kth row in Eq. 6.5 corresponds to a Kirchoff Current Law equation written at the

kth node in the upper circuit, if each Ti in Eq. 6.5 is replaced by Vi. The lower part of

Fig. 6.4 is a circuit whose electrical behaviour corresponds to the Central Differences

approximation (Eq. 6.8).
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System Implementation
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Figure 6.5: Per discretization point block diagram of the heat equation. Implemen-
tation 1.

The state-transition matrices of the above ODEs (AE, AC, and AC∗) have

obvious patterns to them, and as such, the block diagram implementations of these

systems have a high degree of regularity. For the case of the Euler method, one

implementation for one discretization point is shown in Fig. 6.5, for the case when

α
h2 = 1. Fig. 6.5 represents one row in the AE matrix, except the top or bottom

row. Because the coefficients in AE are integer multiples of one another, this ODE

can be implemented using only integrators and fanout blocks. The coefficient of -2

is implemented by summing two outputs of a fanout, with negative polarity. By

scaling the Eq. 6.5 (see Ch. 2) the cases in which α
h2 6= 1 can be handled with the

implementation in Fig 6.5.

As noted in the previous section, the signals that implement the -2 coefficients

are processed by one fanout block whereas the signals that implement the unity

coefficients are processed by two fanouts blocks. As such, if there is a deterministic

error in the gain (G 6= 1) of the fanout blocks, the signals implementing the unity
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coefficients are scaled by G2.

The ith row of Eq. 6.5, when Ṫi = 0 is:

0 = Ti−1 − 2Ti + Ti+1 (6.21)

The rearrangement of Eq. 6.21 gives:

Ti =
Ti+1 + Ti−1

2
(6.22)

In words, the steady-state behaviour of the heat equation is as follows: The temper-

ature at the ith node reaches the average of its neighbours, as shown in Eq. 6.22.

However, when the gain of the fanout is G 6= 1, and the per-node implementa-

tion shown in Fig. 6.5 is used, Eq. 6.21 becomes:

0 = G2Ti−1 − 2GTi + G2Ti+1 (6.23)

The rearrangement of Eq. 6.23 gives:

Ti = G
Ti+1 + Ti−1

2
(6.24)

In words this means that the ith node reaches a temperature less than the average

of its neighbours when G < 1. This equation predicts the downward bowing of the

steady-state temperature profile shown in Fig. 6.3.

An alternative implementation to that in Fig. 6.5 is shown in Fig. 6.6. In this

implementation, the signals implementing the -2 coefficients are scaled by G2 and

those implementing the unity coefficients are scaled by G. The equivalent expression

for the steady-state temperature at a given node, in terms of its neighbours becomes:

Ti =
Ti+1 − Ti−1

2G
(6.25)
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Figure 6.6: Per discretization point block diagram of the heat equation. Implemen-
tation 2.

When G < 1, this equation predicts an upward bowing of the steady-state tempera-

ture profile.

If the implementation for consecutive nodes alternates between the two, each

row in the ODE has all of its elements scaled by the same coefficient - either G or G2.

If the ith row uses the first implementation, the -2 coefficient is scaled by G, while

the unity coefficients it supplies to rows i− 1 and i+1 are scaled by G2. Because the

implementations alternate between rows, rows i−1 and i+1 supply unity coefficients

to row i that are scaled only by G, and they supply -2 coefficients to themselves

that are scaled by G2. Accordingly, the net scaling of each row divides out when one

solves for the steady state temperature, and the temperature at each node becomes

the exact average of its neighbours.

Clearly, this interleaving of implementations in not obvious to the end user of

the analog computer. However, this technique can be applied to higher dimensional

PDEs and could be built into more sophisticated simulation software, thereby making

the analog computer less sensitive to errors.
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The effects of the deviations in fanout blocks’ gains from 1 can be reduced be

using gain blocks, with gains set to be the reciprocal of the fanout blocks’ gains. For

example, if one path of a fanout block has a gain of 0.998, it could be followed by

gain block with a gain of 1
0.998

. However, there are twice as many fanout blocks as

there are gain blocks, meaning that number of gain blocks would limit the possible

size of the simulation.

Measured Results
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Figure 6.7: Results for an n = 14 one-dimensional heat equation.

Results for an n = 14 one-dimensional heat equation, discretized using the

modified Central Differences method are shown in Fig 6.7. A numerical solution to
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the ODEs was computed using Matlab, against which the analog computer’s results

were compared. The lower portion of the figure shows the maximum error along the

rod, as a function of time as well as the root mean squared error as a function of time.

As seen, an RMS error of about 1 % results, with lower results as time increases.

The scaling is such that the 30 s of the solution in Fig 6.7 takes 1.2 ms to

compute on the analog computer.

6.2 Solving Stochastic Differential Equations (SDEs)

on the Analog Computer

6.2.1 Motivation for this Problem Area

Prediction of the noise behaviour of a system can be made in several ways. The noise

in a linear system is processed linearly and predictions of the effects of input noise and

internally generated noise can be made quickly and accurately using frequency domain

techniques. Nonlinear systems are frequently linearized about a constant operating

point and the same analysis is carried out on the linearized system as is done for a

true linear system. This provides reasonably accurate results when the nonlinearities

are soft (i.e., free of discontinuities ), when the operating point is relatively unaffected

by the input signal (i.e., the input signal is relatively small) and when the noise is

small enough so as to not affect the operating point greatly. When the operating

point changes significantly, the transfer functions by which the noise is processed also
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change.

Techniques have been developed to handle the noise analysis of systems with

periodically time-varying conditions. For these, the time-varying operating point is

computed. It is assumed that the noise does not affect this changing operating point,

since the noise behaviour of the system is predicted by linearizing the system around

the periodic operating point. These linear, or linearized, periodically time-varying

systems are treated in a fashion similar to the linear, or linearized, time-invariant

systems.

When the noise is large enough to influence the operating point, it is processed

in a nonlinear fashion. In these situations, accurate results are only achieved through

transient simulations. Usually, the detailed response of a system to a particular noise

signal is not of interest but rather, the statistics of the solution, given the noise

sources’ statistics are of interest.

Stochastic differential equations contain random variables whose power spec-

tral densities are white are have infinite bandwith. This is the same as saying that

the random variables have autocorrelation functions which are dirac delta functions

at the origin. This poses a problem for both numerical analysis and for simulation

on an analog computer. In the former, to perform a transient simulation would re-

quire taking infinitely small time steps and in the latter, the exact equation cannot

be simulated, since no white noise source exists which has infinite bandwidth. How-

ever, in both domains, reasonable transient simulations can be done. On a digital

computer, some estimation is made of the necessary bandwidth of noise that needs to
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be accounted for, which in turn dictates how small the time steps in the simulation

must be. For analog simulation, the same bandwidth estimation can be done, which

dictates the specifications of the noise source to be used, in relation to the nominal

time constants of the integrators in the computer. Stochastic differential equations

appear in a wide range of fields from finance to material science. A discussion of more

sophisticated mathematical techniques can be found in [22].

6.2.2 First Order Nonlinear SDEs: Particle in a Potential

Well

Mathematical Description: The differential equation investigated here is an ex-

ample of an Ornstein-Uhlenbeck process and is given by:

ẋ = −∇U(x) + n(t) (6.26)

∇ denotes the gradient operation. For this example, x is a scalar and U(x) =

0.185x4 + 0.0139x3 − 0.251x2 giving ∇U(x) = 0.740x3 + 0.0416x2 − 0.502x. The

function n(t) is a random variable with zero mean and a Gaussian distribution.

Physical Interpretation and Qualitative Behaviour: U(x) is referred to

as a potential function. This system describes a particle moving in a double potential

well. x is the horizontal displacement of the particle, while ∇U(x) is the steepness of

the well. For this example, the cubic gradient has roots at: -0.852, 0.796 and 0. The

first and second root give rise to stable equilibria. This means that in the absence of

large noise, if the particle is near one of these roots, it will stay near one of them, and
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if the noise were reduced to zero, the particle would converge to one of these values of

x. The root at zero is an unstable equilibrium, and hence, infinitesimally small noise

will perturb the particle away from it. This is analogous to an inverted pendulum.

Mathematically, the inverted vertical state is a solution, but the smallest noise will

disturb the pendulum from its balance.

Measured Results

The function n(t) was generated by a Noisecom noise generator, whose noise was

amplified. The purpose of this experiment was to investigate the degree to which the

analog computer can simulate a noisy differential equation, and not to investigate the

degree to which the combination of the noise source and the amplifier produces white

noise. To best compare the analog computer to a digital computer, the noise function

used in the digital computer was a series of samples taken from the noise signal that

was applied to the analog computer chip.

For a problem of this sort, mathematicians are usually interested in the sta-

tistics of the solution. Simulations using the analog computer and Matlab were con-

ducted with the variance of the Gaussian noise source, n(t), at 11 different levels.

The simulations were repeated 20 times for each noise level over the interval of time

(0 to 5000 s). A plot of x(t) vs. t resulting from the analog computer’s solution of

the ODE is shown in Fig. 6.8.

When the noise is small, x remains close to one of the stable equilibria and

transitions from one well to the other are infrequent. This is visible in the time
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Figure 6.8: First order nonlinear SDE. Small noise (σn(t) = 0.292). Time domain
solution computed by the analog computer.

domain plot Fig. 6.8. The relatively small number of transitions over the simulation

interval necessitates long simulation intervals to generate meaningful statistics. If

statistics were based on a shorter simulation interval, they could falsely suggest that

the particle is limited to only one well.

In addition to examining the time domain behaviour of x(t), probability den-

sity functions (PDFs) of x(t) were computed. Strictly speaking, these PDFs are

histograms of x(t) over 50 bins. In Matlab, it is important that the samples of x(t)

are for equally spaced values of t. Equal temporal spacing in samples is achieved au-

tomatically for analog computer simulations, since the output of the analog computer
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is sampled by an analog to digital converter with a fixed sampling rate. Histograms

computed from a Matlab simulation and an analog computer simulation can be found

in Fig. 6.9.

Because x tends to be close to one of the two equilibria, the PDF is low near

the origin and higher near the equilibria (Fig. 6.9). Agreement between Matlab’s

Simulink and the analog computer is good, as shown by the near coincidence of the

two PDFs.
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Figure 6.9: First order nonlinear SDE. Small noise (σn(t) = 0.292). Statistics.

Fig. 6.10 and Fig. 6.11 show results for the same SDE, but with somewhat

larger noise. As expected, the frequency of transistions of x from one equilibrium to
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Figure 6.10: First order nonlinear SDE. Medium noise (σn(t) = 0.462). Time domain
solution computed by the analog computer.

the other is greater.

Fig. 6.12 and Fig. 6.13 show results for the same SDE, but with even larger

noise. Note that because transitions from one equilibrium to the other are so frequent,

the horizontal axis in Fig. 6.12 was expanded.

Speed of Computation: In an effort to make a fair comparison, every ODE

solver in Matlab was tried and the speed numbers reported below are for the fastest

one. Tolerances were also relaxed to speed up Matlab, without introducing undue

errors. Speed in Matlab will be determined by the time step of the simulation, which

could be forced small by shortening the sampling interval of the output of the noise
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Figure 6.11: First order nonlinear SDE. Medium noise (σn(t) = 0.462). Statistics.

block. The integrators on the analog computer had a nominal time constant of 40 µs

and the noise source was sampled at 1.25 MS/s, giving a sampling period of 0.8 µs.

This ratio of 50 noise samples per integration time constant was maintained on the

digital computer.

The analog computer was able to compute the solution significantly faster than

a digital computer running Matlab. The 20 simulations for a given noise level took a

total of 96 s (running on a Sun Blade 1000), whereas the analog computer took 4 s, or

less than 4 % of the time. However, this first order system used only the hardware in

one macroblock. If all macroblocks were used, 15 other simulations could take place
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Figure 6.12: First order nonlinear SDE. Larger noise (σn(t) = 0.922). Time Domain
solution computed by the analog computer.

simultaneously, allowing the analog computer to reach a solution in only 0.25 % of

the time.

6.2.3 Heat Equation with Random Diffusivity

Equation and Physical Interpretation Eq. 6.1 describes one-dimensional heat

flow when the parameter α is constant as a function of time and space. A more

interesting problem arises when α is a random variable, varying with both space and

time. In this section the discretized model was changed to model random thermal
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Figure 6.13: First order nonlinear SDE. Larger noise (σn(t) = 0.922). Statistics.

diffusivity between adjacent nodes. When α is no longer constant, each row of the

Euler discretization can be rewritten as:

Ṫi = αi−1,i(Ti−1 − Ti)− αi,i+1(Ti − Ti+1) (6.27)

assuming h = 1. αi−1,i is the thermal conductivity of the section of the rod between

the (i − 1)st and ith nodes. Those familiar with circuit analysis will see that this is

simply equivalent to a Kirchoff Current Equation written at node i, assuming that

αi−1,1 is the conductance separating nodes i − 1 and i, C = 1, and Ti is the voltage

at node i. See the electrical equivalent circuit shown in the upper portion of Fig. 6.4.
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The complete set of ODEs is as follows:

Ṫ1,N = αDUADUT1,N + αDLADLT1,N + α0,1bET0 (6.28)

where N is the number of interior points in the discretization of the rod. T1,N is a

length N column vector of temperatures at the discretization points. The N by N

matrix αDU is given by:

αDU =




α1,2 0 · · · · · · 0

0 α2,3 0 · · · 0

...
. . .

...

... αN−1,N 0

0 · · · · · · 0 αN,N+1




(6.29)

Each αi,i+1 is the thermal diffusivity between nodes i and i + 1 in the discretized

model of the rod. The N by N matrix ADU is given by:

ADU =




−1 1 0 · · · · · · 0

0 −1 1 0 · · · 0

...
. . . . . .

...

...
. . . . . . 0

0 · · · · · · 0 −1 1

0 · · · · · · · · · 0 −1




(6.30)

The subscript DU denotes “diagonal, upper”, since ADU has nonzero entries only on

the main diagonal and the diagonal above the main diagonal. This notation is used
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for the matrix αDU to show the association between it and ADU. The N by N matrix

αDL is given by:

αDL =




α0,1 0 · · · · · · 0

0 α1,2 0 · · · 0

...
. . .

...

... αN−2,N−1 0

0 · · · · · · 0 αN−1,N




(6.31)

The N by N matrix ADL is given by:

ADL =




−1 0 · · · · · · · · · 0

1 −1 0 · · · · · · 0

0
. . . . . .

...

...
. . . . . .

...

0 · · · 0 1 −1 0

0 · · · · · · 0 1 −1




(6.32)

The subscript DL denotes “diagonal, lower”, since ADL has nonzero entries only on

the main diagonal and the diagonal below the main diagonal. This notation is used

for the matrix αDL to show the association between it and ADL. The column vector

bE equals 1
h2 [1, 0, · · · , 0]T .

Two sets of experiments were conducted. In the first, α3,4 was a random

variable for a system with 7 internal nodes, and in the second, six αs were random
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variables. The boundary conditions were the same as were used in the deterministic

PDE, and are stated in Eqs. 6.2 to 6.4.

Implementing Random Coefficients on the Analog Computer

In the deterministic case, each α corresponds to the gain of an amplifier that processes

the difference in temperature of two adjacent nodes. In the deterministic example

investigated, all values of α were 1, allowing the amplifiers to be omitted. To make a

coefficient, α, time-varying requires the use of an amplifier of time-varying gain. This

is implemented using a two-input multiplier with one input being α and the other is

the difference between adjacent node temperatures. The function used for α was of

the following form:

α = 1 + n(t) (6.33)

where n(t) is a noise signal with zero mean. A diagram of the implementation of

Eq. 6.33 is shown in Fig. 6.14.

Measured Results

The following are the results for the first example, where α3,4 is random. Several

simulations of the transient response at the nodes on either side of the region with

random diffusivity are shown in Fig. 6.15. If α34 = 1, T3 and T4 would settle to 0.625

and 0.500, respectively, when there are 7 intermediate points. The nonlinear way in

which the noise affects the solution is clearly visible in that the noise pulls each of T3

and T4 more in one direction than in the other.
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Figure 6.14: Circuitry for implementing a random coefficient.

Statistics were generated for the solution at each of the nodes for many sim-

ulations over an interval of time beginning when the system’s response to the input

step had reached a steady state. The start point of this interval was selected, qualita-

tively, to begin at t = 40. Statistics are shown in Fig. 6.16. Agreement is acceptable

between the solutions generated by the analog computer and Matlab. For a linear

noise, symmetrical noise sources will give rise to symmetrical distributions for the

state variables. The asymmetry in the distributions is clear in the analog computer’s

solution and is testament to the need to perform transient simulations, rather than

frequency domain simulations, for the noise behaviour of this system.

Likewise statistics of the solution to a system in which 6 of 7 nodes are random

are shown in Fig. 6.17. These were generated for t > 40s.
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Chapter 7

Using the Analog Computer’s

Solution to Accelerate a Digital

Computer’s Algorithms

7.1 Motivation

Analog computers can find solutions to differential equations rapidly, albeit with only

moderate accuracy. On the other hand, digital computers have the ability to reach

arbitrarily high accuracy. However, if not used carefully, they may converge to a

non-physical solution, may not converge quickly, or may not converge at all. There

are ODEs that are particularly amenable to analog solution in that only a moderately

accurate solution is necessary, and those which require sufficiently high accuracy so

as to necessitate digital computation. One could solve the former with an analog
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system and the later with a digital system. However, the strengths of each approach

can be utilized to a much higher degree if the analog computer is used to provide

its solution to the digital computer, which will use the analog solution as a starting

point for its numerical routine. This approach has the potential to speed up the digital

computer’s solution of ODEs for which high accuracy is needed, while avoiding some

of the aforementioned convergence difficulties.

7.2 Newton-Raphson Based Periodic Steady-State

Solvers

Engineers are frequently interested in the steady-state response of a nonlinear system

to a periodic input. The condition for a system having reached this so-called periodic

steay-state (PSS) is that all state variables at two times, separated by the period of

the input T , are equal to one another. That is:

x(t + T ) = x(t), all t (7.1)

The condition in Eq. 7.1 means that the solution of the ODEs need only be

calculated over one period, subject to Eq. 7.1. One period is discretized into n points.

The derivatives at the last point will depend on the value at the first point, stemming

from Eq. 7.1. If the system has m state variables, over the n points, there are a total

of m × n unknowns. Some periodic steady-state solvers perform Newton-Raphson

iterations on this vector of m× n unknowns.



184

Newton-Raphson iterations can be used to solve a set of nonlinear equations

expressed in the form f(x) = 0. The technique iterates from an interim solution xk

of the equation toward the exact solution xe. When the interim solution is near the

exact solution, the routine exhibits quadratic convergence, meaning that:

lim
k→∞

|xk+1 − xe|
|xk − xe|2 = K (7.2)

for some nonzero constant K, where xk+1 is the interim solution at iteration number

k + 1 and xk is the interim solution at the previous iteration. However, when xk

is farther from xe, convergence may be linear, or, if a local minimum or maximum

separates xk from xe convergence may not occur.

The analog computer’s solution for the forced Duffing’s equation was used as

a vehicle for investigating the degree to which a PSS routine could be accelerated.

Duffing’s equation [23] is as follows:

ẋ = y (7.3)

ẏ = x(1− x2) + R cos(ωt)− γy (7.4)

The qualitative behaviour of this system depends on the parameters R, ω and γ. If

R = 0, the system becomes an autonomous system that will either oscillate or will

settle to one of its two stable equilibria, located at x = ±1 and y = 0, depending

on how large γ is. For R 6= 0 the system will either oscillate periodically, or it will

exhibit chaotic behaviour. Loosely speaking if the amplitude of the forcing function

is small enough that x doesn’t change sign, the solution approaches a stable limit

cycle.
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For fixed R, the transition from a stable limit cycle to chaos can be observed

as γ is reduced. This parameter represents the damping of the autonomous system.

The digital computation of the PSS of the system proceeds in two steps. In

the first step, the DC steady-state solution of the differential equation is computed

assuming that the input source (R cos ωt) is equal to zero. This requires the use of

a root-finding algorithm, such as Newton’s method. This finds the solution to the

nonlinear equation f(z) = 0, where f(z) is the right-hand side of the state-space

description. In this case, z is a vector of two unknowns, x and y. z = 0 is a typical

starting point for this algorithm which in this case, leads to erroneous results since

z = 0 satisfies the equation, but is an unstable equilibrium. To correctly find the

DC steady-state the solution needs to be checked for stability, and if the routine has

found an unstable equilibrium, a different starting guess must be used.

Typically, the DC steady-state solution becomes the starting guess for the

actual PSS solver. In the case of Duffing’s equation, the period, assuming its solution

is periodic, is equal to 2π
ω

. If this interval is discretized into 64 points, then the

solution vector has a length of 128, since there are two variables. Newton’s method is

performed on this vector. If an unstable equilibrium is found for the DC steady-state,

a non-physical PSS solution is also possible. Clearly, reasonable guesses are one way

to avoid nonconvergence or convergence to a nonphysical solution.

For a one-dimensional equation, Newton’s method is the following:

xk+1 = xk − θ∆xk (7.5)
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Where ∆xk, referred to as the Newton step is:

∆xk =
f(xk)

f ′(xk)
(7.6)

In the simplest form of the method for each iteration, θ = 1 and the whole Newton

step is taken. In more sophisticated schemes, values of θ between 0 and 1 are tried

to see if an intermediate step gives a value of xk+1 that better satisfies f(xk+1) = 0.

If so, the intermediate step is taken. This has the benefit of preventing the routine

from skipping over the solution and entering into a region in which convergence is less

likely. These steps during which several values for θ are tried are computationally

more expensive.

A program called PSIM based on algorithms in [15] was used in this investiga-

tion. It is a PSS solver that uses the two-step process described above. The number

of iterations PSIM took varied based on the value of γ. In some cases, only 5 or 6

were needed to take the solution from the correct DC value to the PSS. However,

as γ was reduced, the number of iterations increased. For the set of parameters of

(R = 0.4, γ = 0.67 and ω = 2π ), PSIM took 37 iterations and 12.5 s running on a 2

GHz Pentium IV. However, when the routine started at a solution given by the analog

computer, the number of iterations was reduced to 5 and the computation time to

0.76 s. The relative reduction in simulation time was greater than the reduction in the

number of necessary iterations. This is because some of the iterations taken when the

digital computer starts from a DC solution are the computationally more expensive

routines described in the earlier paragraph. The analog computer’s solution and the

final solution computed by PSIM are both shown in Fig. 7.1, with the latter drawn
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Figure 7.1: One period of the steady-state solution of the Duffing equation. R = 0.4,
γ = 0.67 and ω = 2π. The thick lines correspond to the analog computer’s solution
while the thin lines correspond to PSIM’s solution.

with the thin lines. The state variable y is centered close to the time axis while x

stays above the time axis.

An area for work is to extend this technique to larger systems whose PSS is

desired and to apply this general concept to other numerical techniques.
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Chapter 8

Performance Comparison Between

Analog and Digital Techniques

8.1 Introduction

This chapter outlines some theoretical comparisons between digital and analog com-

puters along two important performance criteria, namely power dissipation and com-

putation speed. While speed is perhaps the most obvious metric, power consumption

is becoming increasingly more important as the power consumption of digital com-

puters increases. For portable applications, the consequence of increased power con-

sumption is obvious: shorter battery life. However, even digital computers plugged

into a wall socket have problems stemming from too high of a power dissipation, such

as overheating and voltage drop due to IR losses in their power distribution network.
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8.2 Energy Dissipation

The following assumptions have been made for this analysis:

• The analog computer’s accuracy is adequate and it adequately solves the dif-

ferential equation at hand.

• The power consumption overhead due to programming the analog computer or

from the ADC/DACs is negligible; in other words, we limit this comparison to

computationally intensive situations.

• Every floating point operation (FLOP) can be done on a digital computer in

one instruction.

• All of the processing work done by the digital computer is carrying out floating

point operations. That is, there is no overhead from instructions that are not

executing floating point operations.

The last two assumptions are necessary simply because most data for the power

efficiency of digital systems quantify energy per instruction. However, we can more

readily gauge the number of floating point operations a routine performs. These

assumptions let us count FLOPs but use the power data for instructions.

On the analog side, the total energy needed for a given computation is simply:

W = PAC∆t (8.1)

Where W is the total energy dissipation, PAC is the power consumption of the analog

computer and ∆t is the duration of the computation. If the computation does not
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use all of the analog computer’s blocks, PAC is replaced by the consumption of only

those blocks used. While power-down capability was not included in this design, a

future design could easily be equipped with the necessary circuitry to power-down

unused circuits.

For a digital computer, the power consumption estimation is more complicated.

An estimation could be made in a similar fashion, using the duration of the simulation

on a digital computer, and the processor’s power consumption. Programs such as

Matlab can show the elapsed CPU time of an operation or simulation. However,

to estimate the power consumption of different digital devices it is more useful to

estimate the number of floating point operations (FLOPs) required to carry out a

simulation, and then scale this number by a given device’s energy per FLOP.

The above technique allows the analog computer to be compared to various

digital computers, in addition to more specialized digital hardware. The latter is

important since the analog computer is somewhat specialized it is appropriate to

compare it to specialized digital devices such as Digital Signal Processors (DSPs) or

custom digital devices.

For this discussion, FLOPs denotes the plural of FLOP. FLOPs per second

will be denoted by FLOPs/s.

Matlab has a number of ODE solvers. All of the routines take a function

f(y, t) describing the ODE: ẏ = f(y, t). A Matlab function called FLOPS can be

used to determine the number of FLOPs a routine takes. However, Matlab does

not unsupported the function in Matlab 6 because the inclusion of the linear algebra
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package LAPACK makes this impractical. The rest of this investigation was done in

the student release of Matlab 5, which supports this feature.

For some large systems, the use of LAPACK may reduce the number of FLOPs

needed to invert matrices and perform other linear algebra functions. However, for

the simple examples considered here, this is not the case, and FLOP analysis using

Matlab 5 is appropriate.

In addition to FLOP count, the ODE solvers give a count of the number of

each of the following:

1. Successful steps: This is the number of time steps at which the solution was

evaluated.

2. Failed attempts: This is the number of time steps at which the solution failed or

did not meet convergence criteria, resulting in a shorter time step being taken.

3. Function evaluations: This is the number of evaluations of f(y, t).

4. Partial derivatives: This is the number of times the Jacobian, ∂f
∂y

is computed

5. LU decompositions.

6. Solutions to linear systems.

The numbers of each of 3) through 6) per time step are influenced by the type

of ODE solver used. For example, the last three are never done when an explicit

routine is used. The time step is determined by tolerance requirements, the dynamics

of the system, and the way in which any noise signals are represented.
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To represent noise up to a given frequency, samples must be generated at least

twice as frequently as the highest frequency of interested. This will force the time

step of the simulation to be approximately as long as the spacing of the noise samples,

when this spacing is much shorter than the system’s shortest time constant. How the

noise samples are interpolated further influences the time steps of the ODE solvers.

For example, representing the noise as a zero-order hold (ZOH) of the noise samples

can force smaller time steps since the noise changes abruptly at the steps in the ZOH.

A linear interpolation (first-order) is computationally more expensive at each time

step, but makes for smoother noise, a more accurate representation of continuous-time

noise, and fewer FLOPs overall.

8.2.1 Example: First-Order Particle in a Well

The solution of this example (Eq. 6.26) was considered in Sect. 6.2.2. When solved

with the routine ode45, with a relative tolerance (relTol) of 10−3, over the interval

t ε (0, 100), 1.6 × 106 FLOPs are needed. The interval t ε (0, 25000) can be simu-

lated in 1 s on the analog computer, when the integrator’s time constant is 40 µs.

On the digital computer, this takes 25000
100

× 1.6 × 106 = 400 MFLOPs. The analog

computer’s circuits that are used in this simulation have a power consumption of

approximately 7.8 mW. Therefore, the equivalent performance of the analog com-

puter is 7.8mW
400MFLOPs/s

' 20 pJ/FLOP, while a typical general purpose digital computer

operates at closer to 10 nJ/FLOP to 100 nJ/FLOP [24].



193

8.2.2 Example: Stochastic Heat Equation

The solution of this example (Eq. 6.28) was considered in Sect. 6.2.3. This example,

with one random coefficient was solved using the suite of ODE solvers in Matlab. To

make a fair comparison, the right-hand side of Eq. 6.28 was coded explicitly, rather

than with matrix multiplication. Each row requires only 3 FLOPs this way rather

than the 19 FLOPs that are required for each row of 10 x 10 matrix multiplication. For

this investigation all ODE solvers were used with a variety of tolerances. The fewest

FLOPs needed to compute a time-domain solution visually equivalent to the solution

when tighter tolerances are used was 2.8 MFLOPs (ode23 and relTol = 10−3). This

was over the interval 0 to 100 s. On the analog computer, this takes two marcoblocks

(but only half the circuits in each macroblock), giving a power dissipation of about

15.6 mW, and a total equivalent performance of 15.6mW
2.8M× 25000

100

∼ 22 pJ/FLOP.

The performance criterion of “visually” equivalence was applied in the following

way: For many ODE solvers, the solutions for relTol = 10−3 and relTol = 10−4

responded to the noise in a similar way. However, when the tolerance was relaxed to

10−2, spikes due to the noise did not track those from the more accurate solutions.

Frequently, spikes would overshoot the more accurate solution.

When there are nine random coefficients, the smallest number of FLOPs in-

creased to 7.1 MFLOPs, bringing the equivalent power efficiency of the analog com-

puter down to 8.9 pJ/FLOP.

Digital signal processors (DSPs) have a typical power efficiency of 100 pJ/FLOP

to 1 nJ/FLOP [24]. Even custom digital ASICs, such as digital filters, have a power
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efficiency in the 10 pJ/FLOP range [24]. However, this analog computer has more

programmability than a digital filter. The analog equivalent of a digital filter is, of

course, an analog filter, which can be made to consume much less power than this

device. This analog computer represents a first attempt at a large VLSI analog com-

puter, and it is expected that future iterations would consume less power. Table 8.1

summarizes this energy dissipation analysis.

Device Power Efficiency

nJ/FLOP

Typical Microprocessor 2-100

DSP 0.1-1

This AC solving SDEs 0.008-0.022

Table 8.1: Energy dissipation comparison.

8.2.3 Fixed Point Versus Floating Point

To achieve the necessary accuracy for the solution of these sample problems, a digital

computer may not need to perform computations in floating point. However, the

analysis is still valid if the computations could be performed in fixed-point. This is

because the custom ASICs mentioned above which have efficiencies in the range of 10

pJ/FLOP are fixed point devices. Secondly, our comparisons with microprocessors

are biased in favour of the microprocessor due to the assumption that all FLOP take

the same number of clock cycles. For example, many microprocessors can pipeline

multiplication operations such that one operation is performed each clock cycle, how-
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ever, very few can complete a division operation each clock cycle. In this analysis, all

FLOPs are treated equally, regardless of its true complexity.

8.2.4 Power Overhead From Data Conversion

Using an energy per conversion per level of 1 pJ (a typical value for high-performance

ADCs), measuring 80 state variables over 1 s with 10-bit resolution at 2 Msamples/s,

leads to 80 × 210 × 2 × 106 × 1 pJ = 163 mW. However, 10 bits may be an overkill.

With the above taking place with only 8 bits, the resulting power dissipation is

approximately 40 mW, or about 33 % of the chip’s power consumption. This increases

the energy consumption numbers calculated above by 33 %.

8.2.5 Comments on Sample Problems

Stochastic differential equations are a class of differential equations that are solved

efficiently on the analog computer. The inclusion of high frequency noise greatly

increases their computational load on a digital computer. However, the speed of the

analog computer is unchanged by it. Further, instead of the exact solution being

important, some statistical summary (mean, rms, or probability density function) is

usually the goal of the simulation. This means that the moderate accuracy of the

analog computer is likely to be adequate in many cases.

There are some limitations to the ability of the analog computer to predict

the effects of high-frequency noise. The finite bandwidth of the memoryless blocks,

and the presence of higher-frequency poles and zeros in the integrators’ frequency
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response limit the range of frequecies over which the noise behaviour of the system can

accurately be simulated. One way to extend this range is to lengthen the time constant

of the integrators, thereby increasing the ratio of the bandwidth of the system to the

unity-gain frequency of the integrators. This has the consequence of proportionally

lengthening the simulation duration and decreasing the power efficiency of the analog

computer. That is, once the input noise bandwidth has reached the bandwidth of the

analog computer’s memoryless blocks, to double the relative frequency of noise that

can be simulated, the time constants of the integrators must also be doubled, causing

the simulation to take twice as long, and reducing the power efficiency of the analog

computer by a factor of 2. This is the same relative performance degradation that

a digital computer suffers when it must take twice as many time steps, which is the

case when the bandwidth of the noise is increased by two.

8.3 Computation Speed

When only about half of the blocks on the analog computer are used, it solves differ-

ential equations at a rate equivalent to a digital computer performing operations at a

rate of as much as 14 GLOPs/s. Desktop personal computers, which seldom perform

more than 1 FLOP per clock cycle, do not perform operations at this rate.
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Chapter 9

Suggestions for Future Work

9.1 Circuit Enhancements

A revision to this analog computer chip should have blocks that meet more stringent

specifications. In particular, the following need to be addressed:

• Offsets of all blocks need to be reduced. Small current-output DACs could be

added to cancel static offsets in the blocks.

• Use of class-AB ports. A wider dynamic range of signals could be achieved by

using class-AB circuits.

• Power-down mode for functional blocks.

• Reduced area of nonlinear blocks.

A wider range of blocks should appear on a future analog computer. In par-

ticular:
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• Trigonometric functions.

• A digital logic block and flip-flops. This would allow for mixed-mode simulation.

• On-chip noise generators with the provision for controlling the frequency spec-

trum of the noise.

One of the most critical modifications to the present chip would be to correct

the problem of the unused SRAM cells powering up in the ON state and shorting the

inputs of blocks to ground. The simplest way to correct this would be to modify the

layout of the existing SRAM/switch cell by removing the VIAS that connect the M5

wires down to the actual input side of the CMOS switches. The unused cells could

easily be changed to use the modified layout and schematic.

9.2 System Modifications

The computation environment of a subsequent design should be modified to have:

• A parallel digital interface to the digital computer.

• A larger number of analog inputs and analog outputs connecting the digital

computer and analog computer.

• On-chip DACs and ADCs with adequate memory on-chip.

• A more direct interface with the digital computer, perhaps incorporating the

AC chip with the above modifications on a PCB that can plug into the digital

computer’s PCI bus.
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• An inter-macroblock switching scheme that allows only a section of a global

wire to be used for a particular connection. This would increase the number of

inter-macroblock connections a given number of global wires could make.

9.3 Future Applications

One of the most promising application areas for future work is the solution of stochas-

tic differential equations. Many interesting problems that are very time consuming

to solve digitally require the solution of low-order equations. Other application areas

that warrant more investigation include:

• Using the analog computer to implement the control algorithms of chemical

reactions.

• The solution of PDEs using the method of characteristics.

• The solution of larger PDEs by connecting arrays of chips together.

• The solution of nonlinear programming problems.
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Appendix A

Summary of Programming Data

for the Analog Computer

A.1 Functional Blocks

A.1.1 Integrator’s Programming Data

Each integrator accepts a 16-bit word consisting of the following:

• b0: Infinity mode. 0 selects dynamic offset cancellation. 1 selects static behav-

ior.

• b1-b2: Input and output range: 00: 100 nA. 10: 1 µA. 01: 20 µA.

• b3-b4: Tuning current range: 00: 100 nA. 10: 1 µA. 01: 20 µA.

• b5: DAC out?. 1 routes the DAC’s output to off-chip for possible measurement.
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• b6-b15: DAC input.

A.1.2 VGA / 2-Input Multiplier’s Programming Data

Each VGA / 2-input multiplier accepts a 16-bit word consisting of the following:

• b0-b1: Input range: 00: 100 nA. 10: 1 µA. 01: 20 µA.

• b2-b3: Output range: 00: 100 nA. 10: 1 µA. 01: 20 µA.

• b4: Mult: 0: circuit acts as a VGA. 1: circuit acts as a 2-input multiplier.

• b5: DAC out?. 1 routes the DAC’s output to off-chip for possible measurement.

• b6-b15: DAC input.

A.1.3 Fanout Block’s Programming Data

Each Fanout accepts an 8-bit word consisting of the following:

• b0-b1: Input range: 00: low. 10: medium. 01: high.

• b2-b3: Output range for output 1: 00: low. 10: medium. 01: high.

• b4-b5: Output range for output 2: 00: low. 10: medium. 01: high.

• b6-b7: Output range for output 3: 00: low. 10: medium. 01: high.

A.1.4 Exponential Block’s Programming Data

Each Exponential block accepts a 2-bit word consisting of the following:
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• b0-b1: Input range: 00: low. 10: medium. 01: high.

A.1.5 Programmable Nonlinear Block’s Programming Data

Each pair of programmable nonlinear blocks is programmed by the following data:

• word0, b0-b1: Input range for x1: 00: low. 10: medium. 01: high.

• word0, b2-b3: Input range for x2: 00: low. 10: medium. 01: high.

• word0, b4-b5: Output range for y1: 00: low. 10: medium. 01: high.

• word0, b6-b7: Output range for y2: 00: low. 10: medium. 01: high.

• word0, b8-b9: Output range for y3: 00: low. 10: medium. 01: high.

• word0, b10-b11: Single block function type for y1 (when applicable).

• word0, b12-b13: Single block function type for y2 (when applicable).

• word0, b14-b15: Combined block function type (when applicable)

• word1, b0: Combos? 1 indicates that the two nonlinear blocks will be used in

tandem, rendering word0, b10-b11 irrelevant. 0 indicates that each nonlinear

block implements a separate single input function, rendering word 0, b14-b15

irrelevant.

• word1, b1: Cal DAC0? 1 routes the output of DAC0 to off-chip.

• word1, b2-b3: Range for DAC0: 00: low. 10: medium. 01: high. DAC0 sets c1.
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• word1, b4-b13: DAC0 input.

• word1, b14: Cal DAC1? 1 routes the output of DAC1 to off-chip.

• word1, b15 - word2, b0: Range for DAC1: 00: low. 10: medium. 01: high.

DAC1 sets c2.

A.2 Programming Summary for Interblock Con-

ncections

The following signals are used to program the state of the chip’s switches, and the

memory in each of the digitally programmed functional blocks:

• CLK: Active low signal used for programming the states of the switches.

• WR EN : Write enable signal for programming switch states.

• RST : Reset signal for resetting the chip.

• a[0]: A signal which is pulsed to latch data into the memory of the functional

block whose address is specified by a[1:5].

• a[1:15]: 16-bit address word.

• d[0:15]: 16-bit data word.

In more detail, the function of the a[0:15] is as follows:
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• a[14] specifies whether the rest of the address word is referring to a location

inside a macroblock (either internal switch states, or functional block memory)

or adjacent to the macroblock.

• a[10:13] determine the macroblock to be programmed, either internally, or ad-

jacent to it. a[10:11] encode the row (00=0, 01=1, 10=2, 11=3) and a[12:13]

encode the column in the same way.

• a[1:9] encode the address of a functional block to be programmed, and the row

and column address within switch memory. For the latter, a[1:3] determines the

index of the block of eight rows in the memory to be programmed and a[4:9]

determines the column (word line) to be programmed. In the former, a[1:5]

determine which function block to program inside a macroblock. How these

bits are interpreted depends on the levels of CLK, WR EN , and a[0] signals.

• a[15] is used to program the column of switches that contains the global outputs

of a macroblock.

Two different blocks of logic process WR EN , a[0], a[10:14] and ultimately

generate an a[0] signal, and WR EN signals for the macroblock. The first block,

GLOBAL ADDRESS DECODER, has one instance on the chip, while the second

MB DECODER appears 16 times, once for each macroblock.

The GLOBAL ADDRESS DECODER block decodes a[10:13] into two sets

of four signals that, through one-hot encoding, specify the row and column of the

macroblock to be programmed. It also produces global and local versions of the
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WR EN . These signals are applied to the WR EN terminal of the memories adjacent

to, and internal to a given macroblock. During a reset, if WR EN is high, both global

and local versions of the signal go high. The GLOBAL ADDRESS DECODER’s

behaviour can be summarized by the following truth tables:

a[10] a[11] row sel[0] row sel[1] row sel[2] row sel[3]

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 l 0 0 0 1

Table A.1: Truth table for GLOBAL ADDRESS DECODER’s row sel.

a[12] a[13] col sel[0] col sel[1] col sel[2] col sel[3]

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 l 0 0 0 1

Table A.2: Truth table for GLOBAL ADDRESS DECODER’s col sel.

WR EN a[14] RST WR EN G WR EN L

0 X X 0 0

1 0 0 0 1

1 l 0 1 0

1 X 1 1 1

Table A.3: Truth table for GLOBAL ADDRESS DECODER’s write enable signals.

Signal row sel[i] is applied to the MB DECODER blocks for all macroblocks

in the ith row while signal col sel[i] is applied to the MB DECODER blocks for all
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macroblocks in the ith column of the macroblock array. WR EN G and WR EN L de-

note global and local write enable signals, which are applied to every MB DECODER

block. The MB DECODER block gates a[0], WR EN G and WR EN L in the fol-

lowing way:

SIG TO GATE col sel row sel RST GATED SIG

A X X 1 A

X 0 0 0 0

X l 0 0 0

X 0 1 0 0

A 1 1 X A

Table A.4: Truth table for the MB DECODER.

Only when a particular macroblock is selected via a[10:13] can its write enable

signals and a[0] be raised. a[14] determines if the write enable signal controls the

internal write enable or the external one.

When a[15] is low, the word lines in the external memory of a macroblock can

be selected by a nor based decoder taking a[4:9] as its input. When a[15] is high, the

word line decoder for the external memory is disabled and a[15] controls the word line

for the SRAM cells controlling the states of the switches that connect global output

wires to off-chip.

A.2.1 Reset

When the RST signal is raised, the chip’s input signals a[0] and WR EN are applied

to all macroblocks, independent of the levels of a[10:14]. Within each macroblock, a
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default data sequence is applied to the memory in all functional blocks. When a[0]

goes high, address lines a[1:5] and the lines that normally propagate their comple-

ments, all go high, causing every block’s memory to be programmed by the default

data. If clk is lowered while RST and WR EN are high, all of the switch memory is

reset such that all switches are open.
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