
LogiCORE™
PCI Implementation Guide

Version 3.0

R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX, XC2064,
XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CORE Generator,
CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX,
Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O, Select-
RAM, Select-RAM+, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock, Ver-
saRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM,
XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc.
The Programmable Logic Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time,
in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use
of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937;
4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603;
5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252;
5,319,254; 5,321,704; 5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250;
5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706;
5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866;
5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523;
5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378;
5,530,384; 5,546,018; 5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450;
5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829;
5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851;
5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904;
5,654,631; 5,656,950; 5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454;
5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276;
5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995;
5,748,942; 5,748,979; 5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534;
5,764,564; 5,768,179; 5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405;
5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448;
5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829;
5,844,844; 5,847,577; 5,847,579; 5,847,580; 5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents
pending. Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement or from any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if
such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering or software support or assistance
provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2003 Xilinx, Inc. All Rights Reserved.

R

LogiCORE™
PCI Implementation Guide

Version 3.0

2100 Logic Drive

San Jose, CA 95124

United States of America

Telephone: +1 408-559-7778

Fax: +1 408-559-7114

September 12, 2003

LogiCORE/AllianceCORE Fax: +1 408-626-6440

Xilinx Home Page URL: www.xilinx.com

Technical Support URL: support.xilinx.com

LogiCORE PCI Solutions URL: www.xilinx.com/pci

Information & Feedback E-mail: logicore@xilinx.com

R

Contents
Chapter 1 Getting Started

Other Documentation .. 1-1
Technical Support ... 1-2

Chapter 2 Family Specific Considerations

Design Support ... 2-1
Device Initialization ... 2-8
Bus Width Detection.. 2-9
Datapath Output Clock Enable.. 2-10
Electrical Compliance.. 2-11
Generating Bitstreams .. 2-14
Know the Degree of Difficulty.. 2-14

Chapter 3 Functional Simulation

Cadence Verilog-XL .. 3-1
Synopsys VSS .. 3-3
Model Technology ModelSim.. 3-4

Verilog.. 3-4
VHDL ... 3-5

Chapter 4 Synthesis

Synopsys FPGA Compiler .. 4-1
Synopsys FPGA Express.. 4-3

Verilog.. 4-3
VHDL ... 4-8

Synplicity Synplify ... 4-13
Verilog.. 4-14
VHDL ... 4-21

Exemplar LeonardoSpectrum ... 4-29
Xilinx XST.. 4-30
LogiCORE PCI Implementation Guide v

Table of Contents
Chapter 5 Implementation

Xilinx Alliance .. 5-1
Xilinx Foundation... 5-3

Chapter 6 Timing Simulation

Cadence Verilog-XL .. 6-1
Synopsys VSS .. 6-2
Model Technology ModelSim.. 6-3

Verilog.. 6-3
VHDL ... 6-4
vi Xilinx Intellectual Property Solutions

Conventions

This manual uses the following conventions. An example illustrates
each convention.

• Courier font denotes the following items:

• Signals on PCI Bus side of the LogiCORE PCI Interface

FRAME_IO (PCI Interface signal name)

FRAME# (PCI Bus signal name)

• Signals within the user application

BACK_UP, START

• Command line input and output

setenv XIL_MAP_LOC_CLOSED

• World Wide Web URLs

http://www.xilinx.com

• HDL pseudocode

assign question = to_be | !to_be;

assign cannot = have_cake & eat_it;

• Design file names

pcim_top.v, pcim_top.vhd

• Courier bold denotes the following items:

• Signals on the user side of the LogiCORE PCI Interface

ADDR_VLD
LogiCORE PCI Implementation Guide vii

• Menu selections or button presses

FILE -> OPEN

• Italic font denotes the following items:

• Variables in a statement for which you must supply values

ngdbuild design_name

• References to other manuals

See the Libraries Guide for more information.

• Emphasis in text

It is not a bug, it is a feature.

• Dark shading indicates items that are not supported or reserved:

• Square brackets “[]” indicate an optional entry or a bus index:

ngdbuild [option_name] design_name

DATA[31:0]

• A vertical or horizontal ellipsis indicates repetitive material that
has been omitted.

A B C ... X Y Z

• The use of “fn(SIG1 . . . SIGn)” in an HDL pseudocode
fragment should be interpreted as “combinational function of
signals SIG1 through SIGn.

SUM = fn(A, B, Cin);

• A vertical bar “|” separates items in a list of choices.

OPTION = [enabled|disabled]

• The prefix “0x” or the suffix “h” indicate hexadecimal notation.

A read of address 0x00110373 returned 45524943h.

• A “Q” on a signal means that it is registered; this is only used for
PCI Bus signals that are delayed by one cycle. An “_N” means the
signal is active low

PERRQ_N is both registered and active low.

SDONE_I in/out Snoop Done signal. Not Supported.
viii Xilinx Intellectual Property Solutions

Chapter 1

Getting Started

Thank-you for purchasing a LogiCORE PCI interface from Xilinx!

The Xilinx LogiCORE PCI interface provides you with a fully veri-
fied, pre-implemented PCI Bus interface. This interface is available in
both 32-bit and 64-bit versions, with support for operation at 33 MHz
and 66 MHz. It is designed to support both Verilog-HDL and VHDL.

This book is intended to serve as a reference for use during the imple-
mentation phase of a project using the Xilinx PCI interface. This book
is comprehensive in nature; some portions may not apply to your
design depending on which version of the LogiCORE PCI interface
you are using.

This book covers the supported design flows for the 64-bit and 32-bit
LogiCORE PCI interfaces targeting devices based on the Virtex archi-
tecture.

An example design, “Ping”, is included with the LogiCORE PCI
interface to demonstrate design flows. Please take the time to simu-
late, synthesize, and implement the example design.

Other Documentation
For more details on the LogiCORE PCI interface, refer to the
following documents located on the Xilinx PCI Lounges, accessible
from the www.xilinx.com/pci web site:

• LogiCORE PCI Databook

• LogiCORE PCI Release Notes

• LogiCORE PCI Design Guide

Further information is available in the Mindshare PCI Systems Archi-
tecture text, which is included in the Xilinx PCI Design Kit, and the
LogiCORE PCI Implementation Guide 1-1

Getting Started
PCI Local Bus Specification, which is available from the PCI Special
Interest Group.

Technical Support
The fastest method for obtaining PCI specific technical support for
the LogiCORE PCI interface is through the support.xilinx.com
web site. Questions are routed to a team of engineers with specific
expertise in using the LogiCORE PCI interface.

Xilinx will provide technical support for use of the LogiCORE
product as described in the LogiCORE PCI Design Guide and the Logi-
CORE PCI Implementation Guide. Xilinx cannot guarantee timing,
functionality, or support of the LogiCORE product for designs that do
not follow these guidelines.
1-2 Xilinx Intellectual Property Solutions

Chapter 2

Family Specific Considerations

This chapter discusses design considerations specific to the Logi-
CORE PCI interface targeting Virtex devices. Please read this chapter
carefully, as it contains important information.

Design Support
Refer to Table 2-1 “Device and Interface Selection Table” for a list of
supported device and interface combinations. Each entry in the table
consists of a device, a bus interface type, and two or three specific
implementation files.

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File

2S100-FG456-6C 33 MHz
5.0 V
64-bit

pcim_lc_33_5_s 2s100fg456_64_33.ucf
no guide file

2S100-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s100fg456_64_33.ucf
no guide file

2S150-FG456-6C 33 MHz
5.0 V
64-bit

pcim_lc_33_5_s 2s150fg456_64_33.ucf
no guide file

2S150-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s150fg456_64_33.ucf
no guide file
LogiCORE PCI Implementation Guide 2-1

Family Specific Considerations
2S150-FG456-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d 2s150fg456_64_66.ucf
2s150fg456_64_66.ncd

2S200-FG456-6C 33 MHz
5.0 V
64-bit

pcim_lc_33_5_s 2s200fg456_64_33.ucf
no guide file

2S200-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s200fg456_64_33.ucf
no guide file

2S200-FG456-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d 2s200fg456_64_66.ucf
2s200fg456_64_66.ncd

2S100E-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s100efg456_64_33.ucf
no guide file

2S150E-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s150efg456_64_33.ucf
no guide file

2S200E-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s200efg456_64_33.ucf
no guide file

2S300E-FG456-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2s300efg456_64_33.ucf
no guide file

2S300E-FG456-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d 2s300efg456_64_66.ucf
2s300efg456_64_66.ncd

V100E-BG352-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s v100ebg352_64_33.ucf
no guide file

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File
2-2 Xilinx Intellectual Property Solutions

Family Specific Considerations
V300-BG432-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d v300bg432_64_66.ucf
v300bg432_64_66.ncd

V300-BG432-5C 33 MHz
5.0 V
64-bit

pcim_lc_33_5_s v300bg432_64_33.ucf
no guide file

V300-BG432-5C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s v300bg432_64_33.ucf
no guide file

V300E-BG432-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d v300ebg432_64_66.ucf
v300ebg432_64_66.ncd

V300E-BG432-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s v300ebg432_64_33.ucf
no guide file

V1000-FG680-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d v1000fg680_64_66.ucf
v1000fg680_64_66.ncd

V1000-FG680-5C 33 MHz
5.0 V
64-bit

pcim_lc_33_5_s v1000fg680_64_33.ucf
no guide file

V1000-FG680-5C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s v1000fg680_64_33.ucf
no guide file

V1000E-FG680-6C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_d v1000efg680_64_66.ucf
v1000efg680_64_66.ncd

V1000E-FG680-6C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s v1000efg680_64_33.ucf
no guide file

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File
LogiCORE PCI Implementation Guide 2-3

Family Specific Considerations
2V1000-FG456-5
C/I/M

66 MHz
3.3 V
64-bit

pcim_lc_66_3_s 2v1000fg456_64_66.ucf
2v1000fg456_64_66.ncd

2V1000-FG456-4
C/I/M

33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2v1000fg456_64_33.ucf
no guide file

2VP7-FF672-7C 66 MHz
3.3 V
64-bit

pcim_lc_66_3_s 2vp7ff672_64_66.ucf
no guide file

2VP7-FF672-5C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 2vp7ff672_64_33.ucf
no guide file

3S1000-FG456-4C 33 MHz
3.3 V
64-bit

pcim_lc_33_3_s 3s1000fg456_64_33.ucf
no guide file

2S30-PQ208-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s 2s030pq208_32_33.ucf
no guide file

2S30-PQ208-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s030pq208_32_33.ucf
no guide file

2S50-PQ208-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s 2s050pq208_32_33.ucf
no guide file

2S50-PQ208-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s050pq208_32_33.ucf
no guide file

2S100-PQ208-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s 2s100pq208_32_33.ucf
no guide file

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File
2-4 Xilinx Intellectual Property Solutions

Family Specific Considerations
2S100-PQ208-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s100pq208_32_33.ucf
no guide file

2S150-PQ208-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s 2s150pq208_32_33.ucf
no guide file

2S150-PQ208-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s200pq208_32_33.ucf
no guide file

2S200-PQ208-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s 2s200pq208_32_33.ucf
no guide file

2S200-PQ208-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s150pq208_32_33.ucf
no guide file

2S50E-PQ208-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s050epq208_32_33.ucf
no guide file

2S100E-PQ208-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s100epq208_32_33.ucf
no guide file

2S150E-PQ208-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s150epq208_32_33.ucf
no guide file

2S200E-PQ208-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s200epq208_32_33.ucf
no guide file

2S300E-PQ208-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2s300epq208_32_33.ucf
no guide file

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File
LogiCORE PCI Implementation Guide 2-5

Family Specific Considerations
V100E-BG352-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s v100ebg352_32_33.ucf
no guide file

V300-BG432-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s v300bg432_32_33.ucf
no guide file

V300-BG432-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s v300bg432_32_33.ucf
no guide file

V300E-BG432-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s v300ebg432_32_33.ucf
no guide file

V1000-FG680-5C 33 MHz
5.0 V
32-bit

pcim_lc_33_5_s v1000fg680_32_33.ucf
no guide file

V1000-FG680-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s v1000fg680_32_33.ucf
no guide file

V1000E-FG680-6C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s v1000efg680_32_33.ucf
no guide file

2V1000-FG456-4
C/I/M

33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2v1000fg456_32_33.ucf
no guide file

2VP7-FF672-5C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 2vp7ff672_32_33.ucf
no guide file

3S1000-FG456-4C 33 MHz
3.3 V
32-bit

pcim_lc_33_3_s 3s1000fg456_32_33.ucf
no guide file

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File
2-6 Xilinx Intellectual Property Solutions

Family Specific Considerations
The wrapper files, located in the <Install Path>/hdl/src/wrap
directory, are actually different “flavors” of the pcim_lc.hdl file
located in the <Install Path>/hdl/src/xpci directory.

Wrapper files contain an instance of the PCI interface and the
instances of all I/O elements used by the PCI interface. Each wrapper
file is specific to a particular PCI Bus signaling environment.

When you are ready to begin a new design, copy the appropriate
wrapper file from the wrap/ directory into the xpci/ directory, and
rename it as pcim_lc.hdl. Absolutely do not modify the wrapper
files.

The constraints files, located in the <Install Path>/hdl/src/
ucf directory, contain various constraints required for the PCI inter-
face. Constraints files must always be used while processing a design.
Each constraints file is specific to a particular device and PCI inter-
face.

Based on your specific device and interface selection, use the appro-
priate constraints file from the ucf/ directory when processing
designs with the Xilinx implementation tools.

The guide files, located in the <Install Path>/hdl/src/guide
directory, contain routing information required for high performance
versions of the PCI interface. Guide files must always be used when
required. Each guide file is specific to a particular device and PCI
interface.

V200-FG256-6C 66 MHz
3.3 V
32-bit

pcim_lc_66_3_d v200fg256_32_66.ucf
v200fg256_32_66.ncd

V200E-FG256-6C 66 MHz
3.3 V
32-bit

pcim_lc_66_3_d v200efg256_32_66.ucf
v200efg256_32_66.ncd

V400E-FG676-6C 66 MHz
3.3 V
32-bit

pcim_lc_66_3_d v400efg676_32_66.ucf
v400efg676_32_66.ncd

Table 2-1 Device and Interface Selection Table

Supported
Device

Bus
Type

Wrapper File
Constraints File

Guide File
LogiCORE PCI Implementation Guide 2-7

Family Specific Considerations
Table 2-2 “Guide File Information” specifies how many guided
components and guided connections are included in each guide file.
Refer to this table after implementation to verify your results.

If a guide file is required, use the appropriate guide file from the
guide/ directory when processing designs with the Xilinx imple-
mentation tools.

Note: The example design relies on the presence of the default
pcim_lc.hdlwrapper file in the xpci/ directory. If you change this
file, you must also change the constraints and guide files used in the
processing scripts.

Device Initialization
Immediately after FPGA configuration, both the PCI interface and the
user application will be initialized by the startup mechanism present
in all Virtex devices.

Table 2-2 Guide File Information

Guide File Components Connections

2s150fg456_64_66.ncd 150 134

2s200fg456_64_66.ncd 150 134

2s300efg456_64_66.ncd 214 134

v300bg432_64_66.ncd 214 134

v300ebg432_64_66.ncd 214 134

v1000fg680_64_66.ncd 214 134

v1000efg680_64_66.ncd 214 134

2v1000fg456_64_66.ncd 214 220

v200fg256_32_66.ncd 90 86

v200efg256_32_66.ncd 90 86

v400fg676_32_66.ncd 90 86
2-8 Xilinx Intellectual Property Solutions

Family Specific Considerations
During normal operation, the assertion of RST# on the PCI Bus will
re-initialize the PCI interface and three-state all PCI Bus signals. This
behavior is fully compliant with the PCI Local Bus Specification. The
PCI interface is designed to correctly handle asynchronous resets.

Typically, the user application must be initialized each time the PCI
interface is initialized. In this case, use the RST output of the PCI
interface as the asynchronous reset signal for the user application.

If part of the user application requires an initialization capability
which is asynchronous to PCI Bus resets, simply design the user
application with a separate reset signal.

Note that these reset schemes require the use of routing resources to
distribute reset signals, since the global resource is not used. The use
of the global reset resource is not recommended.

Bus Width Detection
A PCI interface which provides a 64-bit datapath needs to know if it
is connected to a 64-bit bus or a 32-bit bus. The SLOT64 signal is an
input to the PCI64 interface for this purpose.

The PCI Bus specification provides a mechanism for PCI agents to
determine the width of the bus by sampling the state of the REQ64#
signal at the rising edge of RST#.

In embedded systems, where the bus width is known by design, the
user application can simply drive SLOT64 with the appropriate
value. Note that SLOT64 must never be driven with a static value; it
should always be driven from the output of a flip-flop.

In designs for open systems, the bus width is not known in advance.
In this case, include a separate latch or flip-flop, external to the FPGA,
to sample REQ64#. Figure 2-1 shows how this may be accomplished.

Figure 2-1 Sample SLOT64 Generation

QD

C

SLOT64REQ64#

RST#

RESISTOR
LogiCORE PCI Implementation Guide 2-9

Family Specific Considerations
Although this technique is not technically compliant with the PCI
specification due to the extra loading on REQ64# and RST#, the use
of a large series resistor will help minimize this effect. The inverter
may be pushed into the FPGA.

An alternate method is to push the entire circuit into the FPGA and
use the REQ64Q_N and RST signals provided to the user application.
This method requires that the FPGA be fully configured by the rising
edge of RST#.

When SLOT64 is deasserted, the PCI64 interface automatically three-
states the 64-bit extension signals. In this situation, the 64-bit exten-
sion signals are undriven, which may result in additional power
consumption by the input buffers.

If the additional power consumption is of concern due to design
requirements, consider changing the “Disabled Extension Drive”
option in the HDL configuration file. This option, when enabled,
forces the PCI64 interface to actively drive the extension signals when
SLOT64 is deasserted.

Note: Although this option may reduce power consumption, it
creates an electrically unsavory situation. When a 64-bit card is
installed in a 32-bit slot, the 64-bit bus extension is floating in free
space and unprotected from roaming screwdrivers.

Datapath Output Clock Enable
The LogiCORE PCI interface targeting Virtex devices uses one of two
methods for generating and distributing the datapath output clock
enable signal.

• Specialized device resources, the PCIIOBs, PCILOGIC, and
PCI_CE.

• Generic device resources, IOBs, LUTs, and general purpose
routing.

The specialized device resources offer higher and more predictable
performance. However, they constrain the LogiCORE PCI interface to
the left or right sides of the FPGA device, and limit the number of
LogiCORE PCI interface instances to two. The generic device
resources, while lower performance and less predictable, offer greater
flexibility.
2-10 Xilinx Intellectual Property Solutions

Family Specific Considerations
To summarize, it is either appropriate or necessary to use the generic
device resources in the following cases:

1. The target device is Virtex-II, Virtex-II Pro, or Spartan-III.

2. More than two instances of the interface are required.

3. The interface cannot be located on the left or right side.

To disable the use of specialized device resources, edit the HDL
configuration file and set the CFG[251] bit to logic one.

Note: You must set CFG[251] to logic one if you target a Virtex-II,
Virtex-II Pro, or Spartan-III device. Use of this option with other
devices is not supported, and is incompatible with the provided
constraint and guide files.

Electrical Compliance
The LogiCORE PCI interface targeting Virtex devices uses one of
three Virtex I/O buffer types depending on the signaling environ-
ment (this selection is made via the wrapper file).

Note: Spartan-IIE, Virtex-E, Virtex-II, Virtex-II Pro, and Spartan-III
devices are not 5.0 volt tolerant. Do not use these devices in a 5.0 volt
signaling environment.

Wrapper files for the 5.0 volt signaling environment use the PCI33_5
I/O buffers available on Virtex and Spartan-II devices. This requires
VCCO to be set at 3.3 volts, and does not require a VREF supply.
Observe the relevant specifications in the device data sheet. No other
restrictions apply.

Wrapper files for the 3.3 volt signaling environment use either the
PCI33_3 or the PCI66_3 I/O buffers available on Virtex, Spartan-II,
Virtex-E, Spartan-IIE, Virtex-II, Virtex-II Pro, and Spartan-III devices.
With the exception of Virtex-II Pro and Spartan-III, these require VCCO
to be set at 3.3 volts, and do not require a VREF supply. Observe the
relevant specifications in the device data sheet.

For 3.3 volt signaling in Virtex-E, Spartan-IIE, and Virtex-II devices,
no other restrictions apply. However, additional restrictions do apply
for 3.3 volt signaling in Virtex, Spartan-II, Virtex-II Pro, and Spartan-
III devices, as described below.

For 3.3 volt signaling in Virtex and Spartan-II devices, the data sheets
indicate that the VIL and VIH parameters for the input buffers are a
LogiCORE PCI Implementation Guide 2-11

Family Specific Considerations
function of VCCINT, which is a 2.5 volt supply. In the PCI Local Bus
Specification, the specifications for the 3.3 volt signaling environment
state VIL and VIH as a function of VCC. This may be considered the 3.3
volt system supply.

When the 2.5 volt and 3.3 volt supplies are at their opposite extremes,
the 3.3 volt VIL or VIH specifications will be violated. The violation is
only technical, and will not affect functionality. The VIL or VIH will
not venture beyond the parameters stated in the PCI Local Bus Specifi-
cation to affect noise margins significantly. For all supply combina-
tions, VIL will always be within 35 mV of the specification, and VIH
will be within 75 mV of the specification. They cannot both be out of
specification simultaneously.

Figure 2-2 Relationship For 3.3V Input Buffer Compliance

Figure 2-2 is provided to show the small range of supply voltage
values where VIL or VIH are technically non-compliant. Note that this
may occur with any PCI device if the input buffer supply voltage is
different from the supply voltage of the driving device. For best
results, use a high precision voltage regulator to generate VCCINT.

For 3.3 volt signaling in Virtex-II Pro and Spartan-III devices, the
VCCO. supply must be reduced to 3.0 volts and derived from a preci-

V
C

C
IN

T
 (

V
)

System Supply (V)
3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

3.3V PCI COMPLIANT
REGION
2-12 Xilinx Intellectual Property Solutions

Family Specific Considerations
sion regulator. This reduction of the output driver supply provides
robust device protection without sacrificing PCI electrical compli-
ance, even in the extreme case where the 3.3 volt system supply
climbs as high as 3.6 volts as allowed by the PCI Local Bus Specifica-
tion.

Figure 2-3 is provided to show one possible low-cost solution to
generate the required 3.0 volt output driver supply. Xilinx recom-
mends the use of the circuit shown in the figure, although other
approaches, using other regulators, are possible.

Figure 2-3 Virtex-II Pro Output Driver VCCO Generation

Virtex-II, Virtex-II Pro, and Spartan-III devices, as specified in the
relevant device data sheets, exhibit a 10 pF pin capacitance. This is
compliant with the PCI Local Bus Specification, with one exception.
The specification requires an 8 pF pin capacitance for the IDSEL pin,
to allow for non-resistive coupling to an AD[xx] pin. In practice, this
coupling may be resistive or non-resistive, and is performed on the
system board or backplane. For system board or backplane designs,
use resistive coupling to avoid non-compliance. For add-in cards, this
is not under the control of the designer.

Although the LogiCORE PCI interface does not directly provide the
PME# signal for power management event reporting, it may be imple-
mented by the user application. A typical implementation would
involve the implementation of the power management capability
item in user configuration space, along with a dedicated PME# output
on a general purpose I/O pin.

GND

SUPPLY

+3.0V SUPPLY

26.1, 1%

1.0 uF

1IN

GND

LT1763CS8

8

5 SHDN#

7 GND

6

OUT

ADJ 2

BYP 4

GND 33

4

2

6

7

5

3.3 uF

VCCO

38.3, 1%
LogiCORE PCI Implementation Guide 2-13

Family Specific Considerations
On all device families, if the FPGA power is removed, the general
purpose I/O pin will appear as a low impedance to ground. This
appears to the system as an assertion of PME#. For this reason, imple-
mentations that use the PME# signal should employ an external buff-
ering scheme that will prevent false assertions of PME# when power
is removed from the FPGA device.

Generating Bitstreams
The bitstream generation program, bitgen, may issue DRC warn-
ings when generating bitstreams for PCI designs. The number of
these warnings varies depending on the configuration options used
for the PCI LogiCORE. Typically, these warnings are related to nets
with no loads which are generated during trimming by the map
program. Some of these nets are intentionally preserved by state-
ments in the user constraints file.

For some 66 MHz designs, bitgen must be run with a special option
to change the behavior of a global clock buffer used in the design:

bitgen -g Gclkdel<buf>:<opt> pcim_top_routed.ncd

Refer to the release notes and the user constraints file for additional
information about the use and implications of this required option.

This option is used to introduce additional delay on a global clock
net. It is important to note that this additional delay is observable on
the CLK output of the PCI interface, which is supplied to the user
application. Timing constraints for the user application must be
generated with this in mind.

Know the Degree of Difficulty
PCI interfaces are challenging to implement in any technology. Table
2-3, "Degree Of Difficulty" indicates the degree of difficult in imple-
menting various types of PCI designs in Virtex devices.

Table 2-3 Degree Of Difficulty

Clock Frequency Difficulty

33 MHz Easy

66 MHz Moderate
2-14 Xilinx Intellectual Property Solutions

Family Specific Considerations
The degree of difficulty is sharply influenced by the nature of the user
application. For 66 MHz designs, extensive use of pipelining, logic
mapping, placement constraints, and logic duplication may be
required. Carefully consider all timing specifications in a 66 MHz
design to ensure that the user application is not over-constrained.
LogiCORE PCI Implementation Guide 2-15

Family Specific Considerations
2-16 Xilinx Intellectual Property Solutions

Chapter 3

Functional Simulation

This chapter describes the use of supported tools for functional simu-
lation. These tools are:

• Cadence Verilog-XL v.3.0

• Synopsys VSS v1999.10

• Model Technology ModelSim v5.5b

The example design includes a simple testbench. This testbench may
be leveraged to create larger testbenches. Optionally, users may
purchase third party testbenches or create their own.

The example design is a simple user application which is intended for
use as a training vehicle and design flow test. The LogiCORE PCI32
interface ships with the design “ping32”, while the LogiCORE PCI64
interface ships with the design “ping64”. The examples in this
chapter refer to “ping64”. If you are using the LogiCORE PCI32 inter-
face, simply substitute “ping32” for “ping64”.

Cadence Verilog-XL
Before attempting functional simulation, ensure that the Verilog-XL
environment is properly configured for use.

1. To begin, move into the functional simulation directory:

cd <Install Path>/verilog/example/func_sim

2. Edit the ping_tb.f file. This file lists command line arguments
for Verilog-XL, and is shown below:

../source/ping_tb.v

../source/stimulus.v

../source/busrecord.v

../source/dumb_arbiter.v
LogiCORE PCI Implementation Guide 3-1

Functional Simulation
../source/dumb_targ32.v

../source/dumb_targ64.v

../source/pcim_top.v

../source/ping.v

../source/cfg_ping.v

../source/glbl.v

../../src/xpci/pci_lc_i.v

../../src/xpci/pcim_lc.v
+libext+.vmd+.v
-y <Xilinx Install Path>/verilog/src/unisims
-y <Xilinx Install Path>/verilog/src/simprims

Modify the library search path by changing <Xilinx Install
Path> to match the Xilinx installation directory. Save the file.

Most of the files listed are related to the example design and its
testbench. For other testbenches, the following subset must be
used for proper simulation of the PCI interface:

../source/glbl.v

../../src/xpci/pci_lc_i.v

../../src/xpci/pcim_lc.v
+libext+.vmd+.v
-y <Xilinx Install Path>/verilog/src/unisims
-y <Xilinx Install Path>/verilog/src/simprims

This list does not include any configuration file, user application,
top level wrapper, or testbench. These additional files are
required for a meaningful simulation.

3. To run the Verilog-XL simulation:

verilog -f ping_tb.f

Verilog-XL processes the simulation files and exits. The testbench
prints status messages to the console. After the simulation
completes, view the verilog.log file to check for errors.

The Signalscan browser may be used to view the simulation results.
Signalscan is started with the following command:

signalscan

A sample Signalscan “do file”, signalscan.do is provided for
convenience.
3-2 Xilinx Intellectual Property Solutions

Functional Simulation
Synopsys VSS
Before attempting functional simulation, ensure that the VSS environ-
ment is properly configured for use. Furthermore, the $XILINX envi-
ronment variable must be set to match the Xilinx installation
directory.

1. To begin, move into the functional simulation directory:

cd <Install Path>/vhdl/example/func_sim

2. Run the analyze_ping script. This script will analyze the
required simprim and unisim libraries, as well as the design files.

With the exception of the libraries, most of the files analyzed by
the script are related to the example design and its testbench. For
other testbenches, the following files must be used for proper
simulation of the PCI interface:

$XILINX/vhdl/src/simprims/simprim_Vpackage.vhd
$XILINX/vhdl/src/simprims/simprim_Vcomponents.vhd
$XILINX/vhdl/src/simprims/simprim_VITAL.vhd
$XILINX/vhdl/src/unisims/unisim_VPKG.vhd
$XILINX/vhdl/src/unisims/unisim_VCOMP.vhd
$XILINX/vhdl/src/unisims/unisim_VITAL.vhd
../../src/xpci/pci_lc_i.vhd
../../src/xpci/pcim_lc.vhd

This list does not include any configuration file, user application,
top level wrapper, or testbench. These additional files are
required for a meaningful simulation.

3. To run the VSS simulation:

run_ping

VSS processes the simulation files and halts when the testbench
has finished. The testbench prints status messages to the console.
After the simulation completes, view the console output to check
for errors. The ping.traces file contains a list of signals which
are recorded to the waveform database.

The Waves browser may be used to view the simulation results. A
sample Waves setup “restore file”, ping.wfc is provided for conve-
nience.
LogiCORE PCI Implementation Guide 3-3

Functional Simulation
Model Technology ModelSim
Before attempting functional simulation, ensure that the ModelSim
environment is properly configured for use.

Verilog
1. To begin, move into the functional simulation directory:

cd <Install Path>/verilog/example/func_sim

2. Edit the ping_tb.f file. This file lists command line arguments,
and is shown below:

../source/ping_tb.v

../source/stimulus.v

../source/busrecord.v

../source/dumb_arbiter.v

../source/dumb_targ32.v

../source/dumb_targ64.v

../source/pcim_top.v

../source/ping.v

../source/cfg_ping.v

../source/glbl.v

../../src/xpci/pci_lc_i.v

../../src/xpci/pcim_lc.v
+libext+.vmd+.v
-y <Xilinx Install Path>/verilog/src/unisims
-y <Xilinx Install Path>/verilog/src/simprims

Modify the library search path by changing <Xilinx Install
Path> to match the Xilinx installation directory. Save the file.

Most of the files listed are related to the example design and its
testbench. For other testbenches, the following subset must be
used for proper simulation of the PCI interface:

../source/glbl.v

../../src/xpci/pci_lc_i.v

../../src/xpci/pcim_lc.v
+libext+.vmd+.v
-y <Xilinx Install Path>/verilog/src/unisims
-y <Xilinx Install Path>/verilog/src/simprims

This list does not include any configuration file, user application,
top level wrapper, or testbench. These additional files are
required for a meaningful simulation.
3-4 Xilinx Intellectual Property Solutions

Functional Simulation
3. Invoke ModelSim, and ensure that the current directory is set to:

<Install Path>/verilog/example/func_sim

4. To run the simulation:

do modelsim.do

This compiles all modules, loads them into the simulator,
displays the waveform viewer, and runs the simulation.

VHDL
1. To begin, move into the functional simulation directory:

cd <Install Path>/vhdl/example/func_sim

2. View the ping.files file. This file lists the individual source
files required, and is shown below:

../../src/xpci/pci_lc_i.vhd

../../src/xpci/pcim_lc.vhd

../source/cfg_ping.vhd

../source/ping.vhd

../source/pcim_top.vhd

../source/busrecord.vhd

../source/dumb_arbiter.vhd

../source/dumb_targ32.vhd

../source/dumb_targ64.vhd

../source/stimulus.vhd

../source/ping_tb.vhd

Most of the files listed are related to the example design and its
testbench. For other testbenches, the following subset must be
used for proper simulation of the PCI interface:

../../src/xpci/pci_lc_i.vhd

../../src/xpci/pcim_lc.vhd

This list does not include any configuration file, user application,
top level wrapper, or testbench. These additional files are
required for a meaningful simulation.

3. Invoke ModelSim, and ensure that the current directory is set to:

<Install Path>/vhdl/example/func_sim

4. Create the simprim and unisim libraries. This step only needs to
be done once, the first time you perform a simulation:
LogiCORE PCI Implementation Guide 3-5

Functional Simulation
vlib simprim

vcom -work simprim <Xilinx Install Path>/vhdl/src/
simprims/simprim_Vpackage_mti.vhd

vcom -work simprim <Xilinx Install Path>/vhdl/src/
simprims/simprim_Vcomponents_mti.vhd

vcom -work simprim <Xilinx Install Path>/vhdl/src/
simprims/simprim_VITAL_mti.vhd

vlib unisim

vcom -work unisim <Xilinx Install Path>/vhdl/src/
unisims/unisim_VPKG.vhd

vcom -work unisim <Xilinx Install Path>/vhdl/src/
unisims/unisim_VCOMP.vhd

vcom -work unisim <Xilinx Install Path>/vhdl/src/
unisims/unisim_VITAL.vhd

5. To run the simulation:

do modelsim.do

This compiles all modules, loads them into the simulator,
displays the waveform viewer, and runs the simulation.
3-6 Xilinx Intellectual Property Solutions

Chapter 4

Synthesis

This chapter describes the use of supported tools for synthesis. These
tools are:

• Synopsys FPGA Compiler v1999.10

• Synopsys FPGA Express v2000

• Synplicity Synplify v6.2

• Exemplar LeonardoSpectrum v2000

• Xilinx XST

The example design includes a simple user application which is
intended for use as a training vehicle and design flow test. The Logi-
CORE PCI32 interface ships with the design “ping32”, while the
LogiCORE PCI64 interface ships with the design “ping64”. The
examples and screen shots in this chapter refer to “ping64”. If you are
using the LogiCORE PCI32 interface, simply substitute “ping32” for
“ping64”.

Synopsys FPGA Compiler
Before attempting to synthesize a design, ensure that the Synopsys
FPGA Compiler environment is properly configured for use.

1. To begin, move into the synthesis directory:

cd <Install Path>/hdl/example/synthesis

The synthesis directory contains the WORK directory, the compile
script synopsys.dc and the Design Compiler setup file
.synopsys_dc.setup.

2. Synthesize the design by running the synopsys.dc synthesis
script file from the Design Analyzer, or by using dc_shell:
LogiCORE PCI Implementation Guide 4-1

Synthesis
dc_shell -f synopsys.dc

Use of the Design Analyzer is highly recommended, as it will
stop if an error occurs during the synthesis process. In contrast,
dc_shell will not stop if an error occurs.

The end result of the synthesis step is a set of Synopsys EDIF files
which are fed into the Xilinx implementation tools during the imple-
mentation step.

In practice, the provided synopsys.dc file must be modified to
accommodate other designs. To provide insight into the synthesis
script, the major steps are discussed in the following paragraphs.

1. The entire design is analyzed and elaborated.

analyze -format hdl ../../src/xpci/pci_lc_i.hdl
analyze -format hdl ../../src/xpci/pcim_lc.hdl
analyze -format hdl ../source/cfg_ping.hdl
analyze -format hdl ../source/ping.hdl
analyze -format hdl ../source/pcim_top.hdl
elaborate pcim_top > output.ela

2. The user application is selected as the current design and
constraints are applied to it. Once this is done, the user applica-
tion is compiled.

current_design "ping64"
create_clock "CLK" -period 15
set_output_delay 8 -clock "CLK" all_outputs()
set_max_delay 8 -from {"S_DATA", "S_SRC_EN",\

"S_DATA_VLD", "M_DATA",\
"M_SRC_EN", "M_DATA_VLD",\
"M_ADDR_N"} -to { "ADIO*" }

compile > output.com

3. Once the user application is compiled, the current design is set to
the top level and the entire design is compiled. The FPGA
Compiler is instructed not to touch several modules, including:

• The PCI interface, a “black box”

• Components instantiated from the Xilinx Unified Library

• Modules which have already been compiled

Note that the FPGA Compiler allows selective I/O insertion
through use of the set_port_is_pad command. Ports may be
created using this command instead of directly instantiating I/O
4-2 Xilinx Intellectual Property Solutions

Synthesis
structures. Do not insert pads on PCI Bus signals; these are
already instantiated in the pcim_lc module.

current_design "pcim_lc"
set_dont_touch { "XPCI_*", "PCI_LC" }
current_design "pcim_top"
set_dont_touch "ping64"
set_port_is_pad { "PING_REQUEST64",\

"PING_REQUEST32", "PING_DONE" }
insert_pads
create_clock "PCLK" -period 15
compile

4. After synthesis is complete, the synthesized netlist is written out.
In this process, a “black box” representation of the PCI interface
is created.

remove_attribute "ping64" dont_touch
set_attribute find(design,"*") "xnfout_use_blknames"\

-type boolean false
set_attribute "pcim_top" "part" -type string part
remove_design "PCI_LC_I"
edifout_design_name = "pcim_top"
write -format db -hierarchy \

-output "pcim_top_syn.db"
write -format edif -hierarchy \

-output "pcim_top.sedif"
exit

FPGA Compiler may issue a number of warnings about instantiated
I/O cells. These warnings are expected. Furthermore, the tool may
issue warnings about attributes used for other synthesis tools.

Synopsys FPGA Express
Before attempting to synthesize a design, ensure that the Synopsys
FPGA Express environment is properly configured for use.

Verilog
1. Start FPGA Express and create a new project. This may be done

from the File menu or from the toolbar.
LogiCORE PCI Implementation Guide 4-3

Synthesis
Figure 4-1 Create a New Project

2. A new project dialog box will appear. Create the new project (in
this example, named “flowtest”) in the appropriate synthesis
directory:

<Install Path>/verilog/example/synthesis

Figure 4-2 New Project Dialog Box

3. After creating the new project, FPGA Express will immediately
prompt you to add source files to the project. This process
requires two steps.

The first files are located in:

<Install Path>/verilog/src/xpci

Use the dialog box to move to this directory and select the simu-
lation model and the wrapper file, as shown in Figure 4-3. Then
click on the Open button. FPGA Express will add these files to the
project and return to the main display.
4-4 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-3 Add Sources Dialog Box (LogiCORE Files)

At this point, it is necessary to add additional files required by
the user application. Right click on the flowtest design source
and select Add sources in WORK... from the pop-up menu.

Figure 4-4 Add Additional Files

The final set of design files (the user application) is located in:

<Install Path>/verilog/example/source

Call up the Add Sources dialog box, move to this directory, and
select the files cfg_ping.v, pcim_top.v, and ping.v as
shown in Figure 4-5. (Use CTRL-click to select all the files in one
step.) Then click on the Open button. FPGA Express will add
these files to the project and return to the main display.
LogiCORE PCI Implementation Guide 4-5

Synthesis
Figure 4-5 Add Sources Dialog Box (User Application)

4. Select the top level module of the design, PCIM_TOP, from the
drop-down selection box on the toolbar.

Figure 4-6 Select Top Level Module

FPGA Express will display another dialog box to gather more
information for the implementation process.
4-6 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-7 Create Implementation Dialog Box

Set the “Vendor”, “Family”, “Device”, and “Speed Grade”
options to reflect the targeted device (a V300BG432-6 in this
example). Additionally, the “Preserve Hierarchy” option must be
checked. When you have set the correct options, click on the Ok
button.

FPGA Express will elaborate and optimize the implementation.
When it is complete, the optimized “Chip” will appear in the
main display. FPGA Express may issue a number of warnings
about instantiated I/O cells and attributes used for other
synthesis tools. These warnings are expected.

Figure 4-8 Optimization Result

5. The final step is to export a netlist for use by the Xilinx imple-
mentation tools. Right click on the optimized implementation in
the “Chips” window and select Export Netlist from the pop-
up menu.
LogiCORE PCI Implementation Guide 4-7

Synthesis
Figure 4-9 Export Netlist

FPGA Express will open a dialog box to gather additional infor-
mation before it exports a netlist.

Figure 4-10 Export Netlist Dialog Box

Change the Base name of files to pcim_top (all lowercase).
Modify the Export Directory so that the output files are written
to:

<Install Path>/verilog/example/synthesis

In practice, the export directory does not need to be changed.
However, the sample processing scripts included with the
example design assume that the output EDIF files will be located
in the synthesis directory.

VHDL
1. Start FPGA Express and create a new project. This may be done

from the File menu or from the toolbar.
4-8 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-11 Create a New Project

2. A new project dialog box will appear. Create the new project (in
this example, named “flowtest”) in the appropriate synthesis
directory:

<Install Path>/vhdl/example/synthesis

Figure 4-12 New Project Dialog Box

3. After creating the new project, FPGA Express will immediately
prompt you to add source files to the project. This process
requires two steps.

The first files are located in:

<Install Path>/vhdl/src/xpci

Use the dialog box to move to this directory and select the simu-
lation model and the wrapper file, as shown in Figure 4-13. Then
click on the Open button. FPGA Express will add these files to the
project and return to the main display.
LogiCORE PCI Implementation Guide 4-9

Synthesis
Figure 4-13 Add Sources Dialog Box (LogiCORE Files)

At this point, it is necessary to add additional files required by
the user application. Right click on the flowtest design source
and select Add sources in WORK... from the pop-up menu.

Figure 4-14 Add Additional Files

The final set of design files (the user application) is located in:

<Install Path>/vhdl/example/source

Call up the Add Sources dialog box, move to this directory, and
select the files cfg_ping.vhd, pcim_top.vhd, and ping.vhd
as shown in Figure 4-15. (Use CTRL-click to select all the files in
one step.) Then click on the Open button. FPGA Express will add
these files to the project and return to the main display.
4-10 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-15 Add Sources Dialog Box (User Application)

4. Select the top level module of the design, PCIM_TOP, from the
drop-down selection box on the toolbar.

Figure 4-16 Select Top Level Module

FPGA Express will display another dialog box to gather more
information for the implementation process.
LogiCORE PCI Implementation Guide 4-11

Synthesis
Figure 4-17 Create Implementation Dialog Box

Set the “Vendor”, “Family”, “Device”, and “Speed Grade”
options to reflect the targeted device (a V300BG432-6 in this
example). Additionally, the “Preserve Hierarchy” option must be
checked. When you have set the correct options, click on the Ok
button.

FPGA Express will elaborate and optimize the implementation.
When it is complete, the optimized “Chip” will appear in the
main display. FPGA Express may issue a number of warnings
about instantiated I/O cells and attributes used for other
synthesis tools. These warnings are expected.

Figure 4-18 Optimization Result

5. The final step is to export a netlist for use by the Xilinx imple-
mentation tools. Right click on the optimized implementation in
the “Chips” window and select Export Netlist from the pop-
up menu.
4-12 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-19 Export Netlist

FPGA Express will open a dialog box to gather additional infor-
mation before it exports a netlist.

Figure 4-20 Export Netlist Dialog Box

Change the Base name of files to pcim_top (all lowercase).
Modify the Export Directory so that the output files are written
to:

<Install Path>/vhdl/example/synthesis

In practice, the export directory does not need to be changed.
However, the sample processing scripts included with the
example design assume that the output EDIF files will be located
in the synthesis directory.

Synplicity Synplify
Before attempting to synthesize a design, ensure that the Synplicity
Synplify environment is properly configured for use.
LogiCORE PCI Implementation Guide 4-13

Synthesis
Verilog
1. Start Synplify and create a new project. This may be done from

the File menu or from the toolbar.

Figure 4-21 Create a New Project

2. A “New” dialog box will appear. Create the new project by
selecting “Project File” and entering the project name
(“flowtest” in this example) and synthesis directory:

<Install Path>/verilog/example/synthesis

Figure 4-22 New File Dialog Box

After creating the new project, Synplicity returns to the main
project window.
4-14 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-23 Main Project Window

To add source files to the new project, click the Add button. A
dialog box will appear.

The first file (used by any design that instantiates Xilinx primi-
tives) is located in:

<Synplicity Install Path>/lib/xilinx

Use the dialog box to move to this directory and select the
virtex.v file as shown in Figure 4-24. Then click the Add button
to place this source file in the “Files To Add” list.
LogiCORE PCI Implementation Guide 4-15

Synthesis
Figure 4-24 Select Files to Add Dialog Box (Library)

The next files are located in:

<Install Path>/verilog/src/xpci

Use the dialog box to move to this directory and select the simu-
lation model and the wrapper file, as shown in Figure 4-25. Then
click the Add button to place these source files in the “Files To
Add” list.
4-16 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-25 Select Files to Add Dialog Box (LogiCORE Files)

The final set of design files (the user application) is located in:

<Install Path>/verilog/example/source

Move to this directory and select the files cfg_ping.v,
pcim_top.v, and ping.v , then click on Add, as shown in
Figure 4-26. (Use CTRL-click to select all the files in one step.)

Once you have added these last three files (making a total of six
source files), click OK to return to the main project window.
LogiCORE PCI Implementation Guide 4-17

Synthesis
Figure 4-26 Select Files to Add Dialog Box (User Application)

In the Source Files list, view the list of newly added source files
by double-clicking the flowtest/verilog folder (if it is not
already open). Reorder the source files in the folder by dragging
them around so that the source files are listed in hierarchical
order, as shown in Figure 4-27.
4-18 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-27 Main Project Window with Source Files

3. Click on the Change Result File button. The EDIF Result File
dialog box appears. Move to the directory:

<Install Path>/verilog/example/synthesis

then type in pcim_top.edf for the File name, as shown in
Figure 4-28.

In practice, the directory for the EDIF result file does not need to
be changed. However, the sample processing scripts included
with the example design assume that the output EDIF files will
be located in the synthesis directory.

Click OK to set the name of the result file. You will return to the
main project window.
LogiCORE PCI Implementation Guide 4-19

Synthesis
Figure 4-28 EDIF Result File Dialog Box

4. In the main project window, click on the Change Target
button. This brings up the Options for implementation dialog
box, as shown in Figure 4-29. Under the Device tab, set the “Tech-
nology”, “Part”, “Speed” and “Package” options to reflect the
targeted device (a V300BG432-6 in this example). Be sure
“Disable I/O Insertion” is left unchecked.

Figure 4-29 Options for Implementation - Device

5. While still in this dialog box, click on the Options/Constraints
tab as shown in Figure 4-30. Uncheck “Symbolic FSM Compiler”
(but leave “Resource Sharing” checked), then set the Frequency
to 66 MHz. Then, click on the Implementation Results tab and
4-20 Xilinx Intellectual Property Solutions

Synthesis
uncheck “Write Vendor Constraint File”. Click OK to return to the
main project window.

Figure 4-30 Options for Implementation - Options/Constraints

6. In the main project window, click on Run. Synplify will synthe-
size the design and write out an optimized EDIF file. Synplify
will indicate “Compiling” or “Mapping” in the lower-right
portion of the window as it completes the various stages of
synthesis. When the process is complete, this area will read
“Done”. Synplify may issue a number of warnings about instanti-
ated I/O cells and attributes used for other synthesis tools. These
warnings are expected.

VHDL
1. Start Synplify and create a new project. This may be done from

the File menu or from the toolbar.
LogiCORE PCI Implementation Guide 4-21

Synthesis
Figure 4-31 Create a New Project

2. A “New” dialog box will appear. Create the new project by
selecting “Project File” and entering the project name
(“flowtest” in this example) and synthesis directory:

<Install Path>/vhdl/example/synthesis

Figure 4-32 New File Dialog Box

After creating the new project, Synplicity returns to the main
project window.
4-22 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-33 Main Project Window

To add source files to the new project, click the Add button. A
dialog box will appear.

The first file (used by any design that instantiates Xilinx primi-
tives) is located in:

<Synplicity Install Path>/lib/xilinx

Use the dialog box to move to this directory and select the
virtex.vhd file as shown in Figure 4-34. Then click the Add
button to place this source file in the “Files To Add” list.
LogiCORE PCI Implementation Guide 4-23

Synthesis
Figure 4-34 Select Files to Add Dialog Box (Library)

The next files are located in:

<Install Path>/vhdl/src/xpci

Use the dialog box to move to this directory and select the simu-
lation model and the wrapper file, as shown in Figure 4-35. Then
click the Add button to place these source files in the “Files To
Add” list.
4-24 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-35 Select Files to Add Dialog Box (LogiCORE Files)

The final set of design files (the user application) is located in:

<Install Path>/vhdl/example/source

Move to this directory and select the files cfg_ping.vhd,
pcim_top.vhd, and ping.vhd , then click on Add, as shown in
Figure 4-36. (Use CTRL-click to select all the files in one step.)

Once you have added these last three files (making a total of six
source files), click OK to return to the main project window.
LogiCORE PCI Implementation Guide 4-25

Synthesis
Figure 4-36 Select Files to Add Dialog Box (User Application)

In the Source Files list, view the list of newly added source files
by double-clicking the flowtest/vhdl folder (if it is not
already open). Reorder the source files in the folder by dragging
them around so that the source files are listed in hierarchical
order, as shown in Figure 4-37.
4-26 Xilinx Intellectual Property Solutions

Synthesis
Figure 4-37 Main Project Window with Source Files

3. Click on the Change Result File button. The EDIF Result File
dialog box appears. Move to the directory:

<Install Path>/vhdl/example/synthesis

then type in pcim_top.edf for the File name, as shown in
Figure 4-38.

In practice, the directory for the EDIF result file does not need to
be changed. However, the sample processing scripts included
with the example design assume that the output EDIF files will
be located in the synthesis directory.

Click OK to set the name of the result file. You will return to the
main project window.
LogiCORE PCI Implementation Guide 4-27

Synthesis
Figure 4-38 EDIF Result File Dialog Box

4. In the main project window, click on the Change Target
button. This brings up the Options for implementation dialog
box, as shown in Figure 4-39. Under the Device tab, set the “Tech-
nology”, “Part”, “Speed” and “Package” options to reflect the
targeted device (a V300BG432-6 in this example). Be sure
“Disable I/O Insertion” is left unchecked.

Figure 4-39 Options for Implementation - Device

5. While still in this dialog box, click on the Options/Constraints
tab as shown in Figure 4-40. Uncheck “Symbolic FSM Compiler”
(but leave “Resource Sharing” checked), then set the Frequency
to 66 MHz. Then, click on the Implementation Results tab and
4-28 Xilinx Intellectual Property Solutions

Synthesis
uncheck “Write Vendor Constraint File”. Click OK to return to the
main project window.

Figure 4-40 Options for Implementation - Options/Constraints

6. In the main project window, click on Run. Synplify will synthe-
size the design and write out an optimized EDIF file. Synplify
will indicate “Compiling” or “Mapping” in the lower-right
portion of the window as it completes the various stages of
synthesis. When the process is complete, this area will read
“Done”. Synplify may issue a number of warnings about instanti-
ated I/O cells and attributes used for other synthesis tools. These
warnings are expected.

Exemplar LeonardoSpectrum
Before attempting to synthesize a design, ensure that the Exemplar
LeonardoSpectrum environment is properly configured for use.

1. To begin, move into the synthesis directory:

cd <Install Path>/hdl/example/synthesis

The synthesis directory contains a script for use with Leonar-
doSpectrum.

2. Edit the script to change the following line:

cd <Install Path>/hdl/example/synthesis
LogiCORE PCI Implementation Guide 4-29

Synthesis
Modify the path so that it points to the actual installation loca-
tion, and then save the file. Invoke LeonardoSpectrum.

3. Synthesize the design by running the script leonardo.tcl.
Note that if you run LeonardoSpectrum with the graphical user
interface, the quicksetup form cannot be used to synthesize the
design. Instead, use the File -> Run Script menu option.

The end result of the synthesis step is an EDIF file which is fed into
the Xilinx implementation tools during the implementation step.

In practice, the provided script file file must be modified to accommo-
date other designs. To provide insight into the synthesis script, the
major steps are discussed in the following paragraphs.

1. Various synthesis options are set through the use of environment
variables. These must be present in the script, and should not be
modified. The synthesis library is also loaded; this may be altered
for different devices and speed grades.

2. The design is loaded by reading in the design files. At this point,
the top level module is declared as the present_design. The
script adds nopad attributes (with a value of FALSE) to all PCI-X
Bus interface signals. The I/O structures for these ports are
directly instantiated in the wrapper file.

3. The optimization step is done with the -hierarchy preserve
and the -chip options. The -hierarchy preserve option
prevents LeonardoSpectrum from dissolving the design hier-
archy. The -chip option indicates that automatic I/O buffer
insertion should be performed.

4. After synthesis is complete, the synthesized netlist is written out.

The tool may issue warnings about unused signals. These warnings
are expected.

Xilinx XST
Before attempting to synthesize a design, ensure that the Xilinx XST
environment is properly configured for use. Synthesis is supported
only from the XST command line.

1. To begin, move into the synthesis directory:

cd <Install Path>/hdl/example/synthesis
4-30 Xilinx Intellectual Property Solutions

Synthesis
The synthesis directory contains a script for use with Xilinx XST;
this script is called run_xst.bat for PC platforms and
run_xst.csh for Unix platforms. Note that the run_xst.cmd
and run_xst.prj files are common and used by both scripts.

2. If required, modify the files as required to suit your application.
You may find it necessary to change the target architecture and
select different wrapper and configuration files.

3. Synthesize the design by running the script.

The end result of the synthesis step is an NGC file which is fed into
the Xilinx implementation tools during the implementation step. The
tool may issue warnings about unused signals. These warnings are
expected.
LogiCORE PCI Implementation Guide 4-31

Synthesis
4-32 Xilinx Intellectual Property Solutions

Chapter 5

Implementation

This chapter describes the use of supported tools for FPGA imple-
mentation. These tools are:

• Xilinx Alliance v6.1i Service Pack 1

• Xilinx Foundation v6.1i Service Pack 1

The example design includes a simple user application which is
intended for use as a training vehicle and design flow test.

Xilinx Alliance
Before attempting to implement a design, ensure that the Xilinx envi-
ronment is properly configured for use. Additionally, you must have
successfully synthesized a design.

1. Move into the physical implementation directory:

cd <Install Path>/hdl/example/xilinx

This directory contains the run_xilinx script which calls the
appropriate tools to place and route the example design. Scripts
are provided for Unix and Microsoft Windows operating
systems.

2. Inspect the appropriate run_xilinx script file. Note the
following:

a) Several special environment variables are set at the begin-
ning of the script; these are required and must not be
removed.

b) The ngdbuild command lists both ../../src/xpci and
../synthesis as search directories. The xpci directory
contains a netlist of the PCI interface, and the synthesis
LogiCORE PCI Implementation Guide 5-1

Implementation
directory must contain the EDIF netlist generated during
design synthesis.

The ngdbuild command also reads a user constraints file
that corresponds to a desired target device and a particular
version of the PCI interface.

To target a different device or to use a different version of the
PCI interface, the constraints file must be changed to match
the device and interface selection. The available selections are
listed in the “Family Specific Considerations” chapter.

The user constraints files which are provided with the PCI
interface contain constraints that guarantee pinout and
timing specifications. These constraints must always be used
during processing.

Any additional constraints that pertain to the user applica-
tion must be placed in this file. Before making additions to
the user constraints file, back up the original so that it may be
restored if necessary.

c) The map command requires no special arguments, but uses
an input/output register packing option.

d) The par command, as provided in the script, uses a guide file
in exact guide mode. Note that some designs do not require
the use of guide files.

To target a different device or to use a different version of the
PCI interface, refer to the “Family Specific Considerations”
chapter to determine which guide file, if any, is required.

If a guide file is required, ensure that the correct guide file is
used by editing the script and changing the file name. If a
guide file is not required, remove the following input argu-
ments from the par command line in the script:

-gm exact -gf ../../src/guide/guidefile.ncd

If a guide file is required, the guide file must always be used.
The effort levels and delay cleanup iterations may be
adjusted if necessary.

e) The trce command performs a static timing analysis based
on the design constraints originally specified in the user
constraints file.
5-2 Xilinx Intellectual Property Solutions

Implementation
f) The ngdanno and ngd2hdl commands generate a simula-
tion model of the placed and routed design.

3. Implement the design by running the appropriate script.

During initial processing trials, it is useful to enter the commands one
at a time from the command line, instead of running the script, so that
you may inspect the output of each step.

If the use of a guide file is required, it is important to verify that the
guiding process was successful. This may be done by inspecting the
pcim_top_routed.grf file. The remainder of this section is
specific to designs which require the use of guide files.

The number of pre-routed connections should exactly match the
number listed in the selection table shown in the “Family Specific
Considerations” chapter. The number of unrouted signals will vary
depending on the size of the user application.

If this number does not match, the guide process has failed. This can
occur for several reasons. First, check that the correct user constraints
and guide files have been used. Second, verify that the user applica-
tion observes all signal-driving rules presented in the LogiCORE PCI
Design Guide.

Note: Do not attempt re-entrant routing on a guided design. Re-
entrant routing must not be used as it may re-route nets that were
initially guided by the guide file.

Xilinx Foundation
Before attempting to implement a design, ensure that the Xilinx envi-
ronment is properly configured for use. Additionally, you must have
successfully synthesized a design.

The Xilinx Foundation tools may be used from the command line
exactly as shown for the Alliance tool set.
LogiCORE PCI Implementation Guide 5-3

Implementation
5-4 Xilinx Intellectual Property Solutions

Chapter 6

Timing Simulation

This chapter describes the use of supported tools for timing simula-
tion. These tools are:

• Cadence Verilog-XL v.3.0

• Synopsys VSS v1999.10

• Model Technology ModelSim v5.5b

The example design is a simple user application which is intended for
use as a training vehicle and design flow test. The LogiCORE PCI32
interface ships with the design “ping32”, while the LogiCORE PCI64
interface ships with the design “ping64”. The examples in this
chapter refer to “ping64”. If you are using the LogiCORE PCI32 inter-
face, simply substitute “ping32” for “ping64”.

Cadence Verilog-XL
Before attempting timing simulation, ensure that the Verilog-XL envi-
ronment is properly configured for use. In addition, you must have
successfully completed the implementation phase using the Xilinx
tools.

1. Move into the timing simulation directory and copy the back-
annotated timing models from the implementation directory:

cd <Install Path>/verilog/example/post_sim

cp ../xilinx/pcim_top_routed.v .

cp ../xilinx/pcim_top_routed.sdf .

2. Edit the ping_tb.f file. This file lists command line arguments
for Verilog-XL, and is shown below:

../source/ping_tb.v

../source/stimulus.v
LogiCORE PCI Implementation Guide 6-1

Timing Simulation
../source/busrecord.v

../source/dumb_arbiter.v

../source/dumb_targ32.v

../source/dumb_targ64.v

../source/glbl.v

./pcim_top_routed.v
+libext+.vmd+.v
-y <Xilinx Install Path>/verilog/src/simprims

Modify the library search path by changing <Xilinx Install
Path> to match the Xilinx installation directory. Save the file.

3. To run the Verilog-XL simulation:

verilog -f ping_tb.f

Verilog-XL processes the simulation files and exits. The testbench
prints status messages to the console. After the simulation
completes, view the verilog.log file to check for errors.

The Signalscan browser may be used to view the simulation results.
Signalscan is started with the following command:

signalscan

A sample Signalscan “do file”, signalscan.do is provided for
convenience.

Synopsys VSS
Before attempting timing simulation, ensure that the VSS environ-
ment is properly configured for use. Furthermore, the $XILINX envi-
ronment variable must be set to match the Xilinx installation
directory. In addition, you must have successfully completed the
implementation phase using the Xilinx tools.

1. Move into the timing simulation directory and copy the back-
annotated timing models from the implementation directory:

cd <Install Path>/vhdl/example/post_sim

cp ../xilinx/pcim_top_routed.vhd .

cp ../xilinx/pcim_top_routed.sdf .

2. Run the analyze_ping script. This script will analyze the
required simprim libraries, as well as the design files.

3. To run the VSS simulation:
6-2 Xilinx Intellectual Property Solutions

Timing Simulation
run_ping

VSS processes the simulation files and halts when the testbench
has finished. The testbench prints status messages to the console.
After the simulation completes, view the console output to check
for errors. The ping.traces file contains a list of signals which
are recorded to the waveform database.

The Waves browser may be used to view the simulation results. A
sample Waves setup “restore file”, ping.wfc is provided for conve-
nience.

Model Technology ModelSim
Before attempting timing simulation, ensure that the ModelSim envi-
ronment is properly configured for use. In addition, you must have
successfully completed the implementation phase using the Xilinx
tools.

Verilog
1. Move into the timing simulation directory and copy the back-

annotated timing models from the implementation directory:

cd <Install Path>/verilog/example/post_sim

cp ../xilinx/pcim_top_routed.v .

cp ../xilinx/pcim_top_routed.sdf .

2. Edit the ping_tb.f file. This file lists command line arguments,
and is shown below:

../source/ping_tb.v

../source/stimulus.v

../source/busrecord.v

../source/dumb_arbiter.v

../source/dumb_targ32.v

../source/dumb_targ64.v

../source/glbl.v

./pcim_top_routed.v
+libext+.vmd+.v
-y <Xilinx Install Path>/verilog/src/simprims

Modify the library search path by changing <Xilinx Install
Path> to match the Xilinx installation directory. Save the file.

3. Invoke ModelSim, and ensure that the current directory is set to:
LogiCORE PCI Implementation Guide 6-3

Timing Simulation
<Install Path>/verilog/example/post_sim

4. To run the simulation:

do modelsim.do

This compiles all modules, loads them into the simulator,
displays the waveform viewer, and runs the simulation.

VHDL
1. Move into the timing simulation directory and copy the back-

annotated timing models from the implementation directory:

cd <Install Path>/vhdl/example/post_sim

cp ../xilinx/pcim_top_routed.vhd .

cp ../xilinx/pcim_top_routed.sdf .

2. View the ping.files file. This file lists the individual source
files required, and is shown below:

./pcim_top_routed.vhd

../source/busrecord.vhd

../source/dumb_arbiter.vhd

../source/dumb_targ32.vhd

../source/dumb_targ64.vhd

../source/stimulus.vhd

../source/ping_tb.vhd

3. Invoke ModelSim, and ensure that the current directory is set to:

<Install Path>/vhdl/example/post_sim

4. Create the simprim library. This step only needs to be done once,
the first time you perform a simulation:

vlib simprim

vcom -work simprim <Xilinx Install Path>/vhdl/src/
simprims/simprim_Vpackage_mti.vhd

vcom -work simprim <Xilinx Install Path>/vhdl/src/
simprims/simprim_Vcomponents_mti.vhd

vcom -work simprim <Xilinx Install Path>/vhdl/src/
simprims/simprim_VITAL_mti.vhd

5. To run the simulation:

do modelsim.do
6-4 Xilinx Intellectual Property Solutions

Timing Simulation
This compiles all modules, loads them into the simulator,
displays the waveform viewer, and runs the simulation.
LogiCORE PCI Implementation Guide 6-5

Timing Simulation
6-6 Xilinx Intellectual Property Solutions

	Getting Started
	Other Documentation
	Technical Support

	Family Specific Considerations
	Design Support
	Device Initialization
	Bus Width Detection
	Datapath Output Clock Enable
	Electrical Compliance
	Generating Bitstreams
	Know the Degree of Difficulty

	Functional Simulation
	Cadence Verilog-XL
	Synopsys VSS
	Model Technology ModelSim
	Verilog
	VHDL

	Synthesis
	Synopsys FPGA Compiler
	Synopsys FPGA Express
	Verilog
	VHDL

	Synplicity Synplify
	Verilog
	VHDL

	Exemplar LeonardoSpectrum
	Xilinx XST

	Implementation
	Xilinx Alliance
	Xilinx Foundation

	Timing Simulation
	Cadence Verilog-XL
	Synopsys VSS
	Model Technology ModelSim
	Verilog
	VHDL

