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Conventions

This manual uses the following conventions. An example illustrates

each convention.

• Courier font  denotes the following items:

• Signals on PCI Bus side of the LogiCORE PCI Interface

FRAME_IO (PCI Interface signal name)

FRAME# (PCI Bus signal name)

• Signals within the user application

BACK_UP, START

• Command line input and output

setenv XIL_MAP_LOC_CLOSED

• World Wide Web URLs

http://www.xilinx.com

• HDL pseudocode

assign question = to_be | !to_be;

assign cannot = have_cake & eat_it;

• Design file names

pcim_top.v, pcim_top.vhd

• Courier bold  denotes the following items:

• Signals on the user side of the LogiCORE PCI Interface

ADDR_VLD
LogiCORE PCI Design Guide xi



• Menu selections or button presses

FILE -> OPEN

• Italic font denotes the following items:

• Variables in statements which require user-supplied values

ngdbuild design_name

• References to other manuals

See the Libraries Guide for more information.

• Emphasis in text

It is not a bug, it is a feature.

• Dark shading indicates items that are not supported or reserved:

• Square brackets “[ ]” indicate an optional entry or a bus index:

ngdbuild  [option_name] design_name

DATA[31:0]

• A vertical or horizontal ellipsis indicates repetitive material that

has been omitted.

A B C ... X Y Z

• The use of “fn(SIG1 . . . SIGn) ” in an HDL pseudocode

fragment should be interpreted as “combinational function of

signals SIG1 through SIGn.

SUM = fn(A, B, Cin);

• A vertical bar “|” separates items in a list of choices.

OPTION = [enabled|disabled]

• The prefix “0x ” or the suffix “h” indicate hexadecimal notation.

A read of address 0x00110373  returned 45524943h .

• A “Q” on a signal means that it is registered; this is only used for

PCI Bus signals that are delayed by one cycle. An “_N” means the

signal is active low

PERRQ_N is both registered and active low.

SDONE_I in/out Snoop Done signal. Not Supported.
xii Xilinx Intellectual Property Solutions



Chapter 1

Getting Started

Thank you for purchasing the LogiCORE PCI interface from Xilinx!

The Xilinx LogiCORE PCI interface is a fully verified, pre-imple-

mented PCI Bus interface. This interface is available in 32-bit and 64-

bit versions, with support for multiple Xilinx FPGA device families. It

is designed to support both Verilog-HDL and VHDL. The design

examples in this book are provided in Verilog.

This book is intended to serve as a reference for use during the design

phase of a project using the Xilinx PCI interface. This book is compre-

hensive in nature; some portions may not apply to all designs.

For installation instructions and system requirements, refer to the

LogiCORE PCI Release Notes which accompany the product.

Other Documentation
For more details on the LogiCORE PCI interface, refer to the

following documents located on the Xilinx PCI Lounges, accessible

from the www.xilinx.com/pci  web site:

• LogiCORE PCI Databook

• LogiCORE PCI Release Notes

• LogiCORE PCI Implementation Guide

Further information is available in the Mindshare PCI Systems Archi-
tecture text, which is included in the Xilinx PCI Design Kit, and the

PCI Local Bus Specification, which is available from the PCI Special

Interest Group.
LogiCORE PCI Design Guide 1-1



Getting Started
Technical Support
The fastest method for obtaining PCI specific technical support for

the LogiCORE PCI interface is through the support.xilinx.com
web site. Questions are routed to a team of engineers with specific

expertise in using the LogiCORE PCI interface.

Xilinx will provide technical support for use of the LogiCORE

product as described in the LogiCORE PCI Design Guide and the Logi-
CORE PCI Implementation Guide. Xilinx cannot guarantee timing,

functionality, or support of the LogiCORE product for designs that do

not follow these guidelines.
1-2 Xilinx Intellectual Property Solutions



Chapter 2

Signal Description

Figure 2-1, “Top Level Block Diagram” shows how a typical user

application is interfaced to the LogiCORE PCI interface. The interface

signals are grouped into functional sections with the standard PCI

Bus interface signals on the left-hand side of the interface symbol and

all user interface signals on the right-hand side of the symbol.

Figure 2-1 Top Level Block Diagram

For HDL users, the file pcim_top.v  or pcim_top.vhd  represents

this structure.
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Signal Description
PCI Bus Interface Signals
Table 2-1, “PCI Bus Interface Signals,” defines the interface signals

that comprise the PCI Local Bus. These signals appear on the left side

of Figure 2-2, “LogiCORE PCI Bus Interface Symbol”.

Figure 2-2 LogiCORE PCI Bus Interface Symbol

Note: Pin locations are device and package dependent. Refer to the

appropriate constraints file for specific device configurations.
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Signal Description
Table 2-1 PCI Bus Interface Signals

Signal Name Type Functional Description

Address and Data Path

AD_IO[31:0] t/s AD_IO[31:0]  is a time-multiplexed address and data

bus. Each bus transaction consists of an address phase

followed by one or more data phases.

CBE_IO[3:0] t/s CBE_IO[3:0]  is a time-multiplexed bus command and

byte enable bus. Bus commands are asserted during an

address phase on the bus. Byte enables are asserted

during data phases.

PAR_IO t/s PAR_IO generates and checks even parity across

AD_IO[31:0]  and CBE_IO[3:0] .

When the PCI interface is the source of an address or

data, the interface generates even parity across

AD_IO[31:0]  and CBE_IO[3:0]  and presents the

result on PAR_IO one cycle after the values were

presented on AD_IO[31:0]  and CBE_IO[3:0] .

When the interface receives an address or data, the inter-

face checks for even parity across AD_IO[31:0]  and

CBE_IO[3:0]  and compares it to PAR_IO one cycle

later. Parity errors are reported via PERR_IO.
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Signal Description
Transaction Control

FRAME_IO s/t/s

active

low

FRAME_IO is driven by an initiator to indicate a bus

transaction. FRAME_IOis asserted for the duration of the

operation and is deasserted during the last data phase to

identify the end of the transaction.

When operating as an initiator, the LogiCORE interface

will only assert FRAME_IO when all of the following

conditions are met:

• GNT_I has been asserted for more than one cycle

• IRDY_IO  and FRAME_IO are deasserted, meaning

the bus is idle

• The bus master enable bit (CSR2) is set in the

command register

• The user application has asserted REQUEST or

REQUEST64

The LogiCORE interface will deassert FRAME_IO upon

any of the following conditions:

• The user application asserts COMPLETE

• The interface receives a termination from the

addressed target (retry, disconnect, or abort)

• Not receiving a DEVSEL_IO assertion from the

addressed target (master abort)

• The internal latency timer has expired, if enabled,

and the system arbiter is no longer asserting GNT_I

• A 32-bit target responds to a 64-bit transfer request

DEVSEL_IO s/t/s

active

low

DEVSEL_IO indicates that a target has decoded the

address presented during the address phase and is

claiming the transaction. This occurs when the address

matches one of the Base Address Registers in the target.

Table 2-1 PCI Bus Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
TRDY_IO s/t/s

active

low

TRDY_IO indicates that the target is ready to complete

the current data phase. When TRDY_IO is asserted, the

target is ready to transfer data.

Data transfer occurs when both TRDY_IO and IRDY_IO
are asserted on the bus.

IRDY_IO s/t/s

active

low

IRDY_IO  indicates that the initiator is ready to complete

the current data phase. When IRDY_IO  is asserted, the

initiator is ready to transfer data.

Data transfer occurs when both TRDY_IO and IRDY_IO
are asserted on the bus.

STOP_IO s/t/s

active

low

STOP_IO indicates that the target has requested to stop

the current transaction. The target uses STOP_IO to

signal a disconnect, retry, or target abort.

The interface asserts STOP_IO under the control of the

user application. However, the interface automatically

asserts it during non-linear memory transactions,

performing disconnect with data.

IDSEL_I in IDSEL_I  indicates that the interface is the target of a

configuration cycle.

Interrupts

INTA_O o/d

active

low

INTA_O indicates the LogiCORE PCI interface requests

an interrupt. This may be disabled by setting the inter-

rupt disable bit in the command register.

Table 2-1 PCI Bus Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
Error Signals

PERR_IO s/t/s

active

low

PERR_IOindicates that a parity error was detected while

the LogiCORE PCI interface was the target of a write

transfer or the initiator of a read transfer.

Parity errors are reported two clock cycles after the data

transaction appeared on the AD_IO and CBE_IO lines.

Parity error reporting on PERR_IO is enabled by setting

the report parity errors bit (CSR6) in the command

register.

Parity errors, except those during special cycles, are

always reported in the status register (CSR31). Addition-

ally, the initiator reports parity errors during a transac-

tion when it was the bus master. The error is reported via

the data parity error detected bit (CSR24) in the status

register if the report parity errors bit (CSR6) is set in the

command register.

SERR_IO o/d

active

low

SERR_IO indicates that a parity error was detected

during an address cycle, except during special cycles.

SERR_IOis asserted on the third clock after FRAME_IOis

first asserted. System errors are reported on the signaled

system error bit (CSR30) in the status register if the

SERR_IO enable bit (CSR8) and the report parity errors

bit (CSR6) are set in the command register.

SERR_IO is an open-drain output. Per the PCI Local Bus
Specification, SERR_IO  is not actively driven high after

assertion.

Arbitration

REQ_O t/s

active

low

REQ_O indicates to the arbiter that the LogiCORE PCI

initiator requests access to the bus. The initiator may only

request the bus when it has been enabled by setting the

bus master enable bit (CSR2) in the command register.

Table 2-1 PCI Bus Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
GNT_I t/s

active

low

GNT_I indicates that the arbiter has granted the bus to

the LogiCORE PCI initiator.

If GNT_I is asserted and there is not a pending request, or

the bus master enable bit is not set, then the interface

performs bus parking.

System Signals

RST_I in

active

low

RST_I  is the PCI Bus reset signal. This signal is used to

bring PCI-specific registers, sequencers, and signals to a

consistent state. Any time RST_I  is asserted, all PCI

output signals are three-stated.

PCLK in PCLK is the PCI Bus clock signal. This signal provides

timing for all transactions on the PCI Bus and is an input

to every PCI device. The frequency of PCLK may vary as

allowed in the PCI Local Bus Specification.

64-bit Extension

AD_IO[63:32] t/s AD_IO[63:32]  is a time-multiplexed address and data

bus. Each bus transaction consists of an address phase

followed by one or more data phases. During address

phases presented by 64-bit initiators, AD_IO[31:0]  is

driven with valid (reserved) values.

CBE_IO[7:4] t/s CBE_IO[7:4]  is a time-multiplexed bus command and

byte enable bus. During address phases presented by 64-

bit initiators, CBE_IO[7:4]  is driven with valid

(reserved) values. Byte enables for the 64-bit extension

are asserted during data phases.

Table 2-1 PCI Bus Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
PAR64_IO t/s PAR64_IO generates and checks even parity across

AD_IO[63:32]  and CBE_IO[7:4] .

When the PCI interface is the source of an address or

data, the interface generates even parity across

AD_IO[63:32]  and CBE_IO[7:4]  and presents the

result on PAR64_IO one cycle after the values were

presented on AD_IO[63:32]  and CBE_IO[7:4] .

When the interface receives an address or data, the inter-

face checks for even parity across AD_IO[63:32]  and

CBE_IO[7:4]  and compares it to PAR64_IO one cycle

later. Parity errors are reported via PERR_IO.

ACK64_IO s/t/s

active

low

ACK64_IO indicates that a target has decoded the

address presented during the address phase and is

claiming the transaction as a 64-bit target. This occurs

when the initiator makes a 64-bit transfer request using

REQ64_IO, the address matches one of the Base Address

Registers in the target, and the target is 64-bit enabled.

Table 2-1 PCI Bus Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
REQ64_IO s/t/s

active

low

REQ64_IO is driven by the initiator to indicate a 64-bit

bus transaction. REQ64_IO is asserted for the duration of

the operation and is deasserted during the last data

phase to identify the end of the transaction. Its behavior

is similar to FRAME_IO.

When operating as an initiator, the LogiCORE interface

will only assert REQ64_IO when all of the following

conditions are met:

• GNT_I has been asserted for more than one cycle

• IRDY_IO  and FRAME_IO are deasserted, meaning

the bus is idle

• The bus master enable bit (CSR2) is set in the

command register

• The user application has asserted REQUEST64

The LogiCORE interface will deassert REQ64_IO upon

any of the following conditions:

• The user application asserts COMPLETE

• The interface receives a termination from the

addressed target (retry, disconnect, or abort)

• Not receiving a DEVSEL_IO assertion from the

addressed target (master abort)

• The internal latency timer has expired, if enabled,

and the system arbiter is no longer asserting GNT_I

• A 32-bit target responds to a 64-bit transfer request

in = input only signal

out = output only signal

t/s = bidirectional, three-state signal

s/t/s = bidirectional, sustained three-state signal

o/d = open drain

Table 2-1 PCI Bus Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
User Interface Signals
The user interface to the LogiCORE PCI interface provides a superset

of the necessary data paths and control signals required for typical

applications. This provides ultimate flexibility for specialized user

applications.

Table 2-2, “User Interface Signals,” describes the interface signals

available to the user application. These signals appear on the right

half of Figure 2-2, “LogiCORE PCI Bus Interface Symbol”.
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Signal Description
Table 2-2  User Interface Signals

Signal Name Type Functional Description

Configuration

CFG[255:0] in CFG[255:0] , driven by a cfg  module, configures the

PCI interface.

Cycle Control

FRAMEQ_N out

active

low

FRAMEQ_N is a registered version of the PCI Bus

FRAME_IO signal.

DEVSELQ_N out

active

low

DEVSELQ_N s a registered version of the PCI Bus

DEVSEL_IO signal.

IRDYQ_N out

active

low

IRDYQ_N s a registered version of the PCI Bus IRDY_IO
signal.

TRDYQ_N out

active

low

TRDYQ_N s a registered version of the PCI Bus TRDY_IO
signal.

STOPQ_N out

active

low

STOPQ_N s a registered version of the PCI Bus STOP_IO
signal.

Address and Data Path

ADDR[31:0] out ADDR[31:0]  holds PCI Bus addresses latched during

address phases. It may be used for address decoding or

for loading user address counters. The address is avail-

able in the cycle following the assertion of ADDR_VLD
and remains stable until ADDR_VLD is asserted again.

ADIO[31:0] t/s ADIO[31:0] is a time multiplexed address and data bus.

This bus must be driven using internal three-state

buffers.
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Signal Description
Target Control

ADDR_VLD out ADDR_VLD indicates the beginning of a potential address

phase on the PCI Bus and that the address is available on

the ADIO[31:0]  internal bus. The latched address is

presented on ADDR[31:0]  one cycle later. Likewise, the

PCI Bus command is presented on S_CBE[3:0]  and

latched, decoded, and presented on PCI_CMD[15:0] .

ADDR_VLD is active only during potential target opera-

tions. It is not asserted during address phases that result

from LogiCORE initiator activity.

CFG_VLD out CFG_VLD indicates the beginning of a potential configura-

tion cycle. This signal is similar in nature to ADDR_VLD
but is further qualified by IDSEL_I .

S_DATA_VLD out S_DATA_VLD indicates that a data transaction has

occurred on the PCI Bus while the PCI interface is a

target. S_DATA_VLD is asserted on the clock cycle after

data transfer occurs on the PCI Bus and the target state

machine is in the S_DATA state.

When receiving data, S_DATA_VLDalso indicates that the

data is available on the ADIO bus. When sourcing data,

S_DATA_VLD simply indicates successful data transfer.

S_SRC_EN out S_SRC_EN is an enable signal used to increment a data

pointer when the interface is the source of data in a target

burst read.

S_WRDN out S_WRDN indicates the data transfer direction during

target transactions. During target writes, S_WRDN is
asserted; during target reads, S_WRDN is deasserted.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
PCI_CMD[15:0] out PCI_CMD[15:0]  indicates the current decoded and

latched PCI Bus operation. This bus is a fully decoded

(one hot) version of the current PCI Bus command. The

command is captured during the address phase and

remains stable until the next address phase.

S_CBE[3:0] out S_CBE[3:0]  indicates the current PCI Bus command or

byte enables for a target access. Note that byte enables are

active low.

BASE_HIT[7:0] out BASE_HIT[7:0]  indicates that one of the Base Address

Registers has decoded and matched an address. The bus

is one-hot encoded as indicated below. The BASE_HIT
signals are active for one clock cycle, the cycle preceding

the S_DATA state.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description

10

Reserved

9 8 7 6 5 4 0123

Memory Write and Invalidate

I/O Read

I/O Write

Memory Read

Memory Write

Configuration Read

Configuration Write

Memory Read Multiple

Dual Address Cycle

Memory Read Line

X8180

1112131415

Interrupt Acknowledge

Special Cycle

Reserved

7 6 5 4 3 2 01

Base Register 0

Base Register 1

X8294

Base Register 2

BASE_HIT[7:0] Bus

Reserved
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Signal Description
CFG_HIT out CFG_HIT indicates the start of a valid configuration

cycle. The CFG_HIT signal is active for one clock cycle,

the cycle preceding the S_DATA state. This signal is

similar in nature to the BASE_HIT signals.

C_READY in C_READY signals that the user application is ready to

transfer configuration data. This is one of the signals

which controls TRDY_IO.

For most applications, C_READY should always be

asserted. The exceptions are applications that require

access to user configuration space.

C_TERM in C_TERM signals that the user application is terminating

the transfer of configuration data. This is one of the

signals which controls STOP_IO.

For most applications C_TERM should always be

asserted. The exceptions are applications that require

wait states when accessing user configuration space.

S_READY in S_READY signals that the user application is ready to

transfer data. This is one of the signals which controls

TRDY_IO.

If the user application is not ready to transfer data,

S_READY should be delayed until the application is

ready to support a sustained burst transfer. Do not deas-

sert S_READY in the middle of a transfer.

S_TERM in S_TERM signals that the user application is terminating

the transfer of data. This is one of the signals which

controls STOP_IO.

S_ABORT in S_ABORT is used to signal a serious error condition

which requires the current transaction to stop.

S_ABORT should be used to signal an address overrun

during a burst transfer or an unaligned 64-bit access.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
Initiator Control

REQUEST in REQUEST is used to request a PCI initiator transaction.

Assertion of REQUEST causes the PCI interface to assert

REQ_O if the bus master enable bit (CSR2) is set in the

command register. This bit is cleared at reset.

REQUESTHOLD in REQUESTHOLD is used to force an extended bus request.

Assertion of REQUESTHOLD causes the PCI interface to

assert REQ_O if the bus master enable bit (CSR2) is set in

the command register.

Unlike the REQUEST signal, REQUESTHOLD is not an

input to the LogiCORE initiator state machine.

REQUESTHOLD is intended to allow applications with

very demanding bandwidth requirements to keep REQ_O
asserted as long as possible.

Do not assert REQUESTHOLD unless a transfer has been

requested and is in progress. Otherwise, the arbiter may

identify the LogiCORE interface as a broken master.

M_CBE[3:0] in M_CBE[3:0]  is used by the user application to drive

command and byte enables during initiator transactions.

Bus commands should be presented during the assertion

of M_ADDR_N, and byte enables should be presented

during the M_DATA state. Note that byte enables are

active low.

M_WRDN in M_WRDNindicates the data transfer direction during initi-

ator transactions. During initiator writes, assert M_WRDN;
during initiator reads, deassert M_WRDN.

COMPLETE in COMPLETEsignals the initiator state machine to finish the

current transaction. Once asserted, COMPLETE must

remain asserted until the state machine leaves the

M_DATA state. This is one of this signals which controls

FRAME_IO and IRDY_IO .

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
M_READY in M_READY signals that the user application is ready to

transfer data. If deasserted, wait states are inserted. This

is one of the signals which controls IRDY_IO .

If the user application is not ready to transfer data,

M_READY should be delayed until the application is

ready to support a sustained burst transfer. Do not deas-

sert M_READY in the middle of a transfer.

M_DATA_VLD out M_DATA_VLD indicates that a data transaction has

occurred on the PCI Bus while the PCI interface is an

initiator. M_DATA_VLDis asserted on the clock cycle after

data transfer occurs on the PCI Bus and the initiator state

machine is in the M_DATA state.

When receiving data, M_DATA_VLDalso indicates that the

data is available on the ADIO bus. When sourcing data,

M_DATA_VLD simply indicates successful data transfer.

M_SRC_EN out M_SRC_EN is an enable signal used to increment a data

pointer when the interface is the source of data in an initi-

ator burst write.

CFG_SELF in CFG_SELFindicates to the PCI interface that it is allowed

to issue a configuration cycle to itself. The assertion of

this signal overrides the bus master enable bit (CSR2) and

modifies the internal data path. It is intended for use only
in host bridge applications.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
TIME_OUT out TIME_OUT indicates that the internal latency timer has

expired and that the user application has exceeded the

maximum number of clock cycles allowed by the system

configuration software.

If the latency timer expires while the system arbiter is still

asserting GNT_I, the operation will continue until either

the operation completes, or the arbiter deasserts GNT_I.
If the latency timer expires and the system arbiter has

already deasserted GNT_I, then the operation terminates.

The user application should handle this termination like

any other target termination.

Note: The default latency timer value is 0, indicating

immediate time-out. Ensure that the system configura-

tion software writes a sufficiently large value in the

latency timer register to allow the desired transfer size.

State Machine - Initiator

M_DATA out M_DATA indicates that the initiator is in the data transfer

state. The M_DATA state will occur after the assertion of

M_ADDR_N unless a single cycle assertion of GNT_I
occurs.

DR_BUS out DR_BUS indicates that the bus is parked on the Logi-

CORE interface. The LogiCORE initiator is then respon-

sible for driving the AD_IO[31:0]  bus, the

CBE_IO[3:0]  bus, and the PAR_IO signal to prevent

these three-state bus signals from floating. The actual

values driven on these lines are not important.

M_ADDR_N out

active

low

M_ADDR_N indicates that the initiator is in the address

state. During this time, the user application must drive a

valid address on ADIO and a valid bus command on

M_CBE.

M_ADDR_Nis asserted with a one clock cycle overlap with

either the I_IDLE  or DR_BUS states.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
I_IDLE out I_IDLE indicates that the initiator is in the idle state. The

initiator is either not enabled, does not have an active

request pending, or has not received GNT_I from the

system arbiter.

The state machine will always remain in either the

I_IDLE  or DR_BUS state when the bus master enable bit

(CSR2) in the command register is reset.

State Machine - Target

IDLE out IDLE  indicates that the target is in the idle state.

B_BUSY out B_BUSY indicates that the PCI Bus is busy. An agent has

started a transaction (FRAME_IO has been asserted) but

the target state machine either has not yet finished

decoding the address or has determined that it is not the

target of the current operation.

S_DATA out S_DATA indicates that the target is in the data transfer

state. The target has decoded the address and matched it

to one of its Base Address Registers or a configuration

operation is in progress. The target has accepted the

request and will respond.

BACKOFF out BACKOFF indicates that the user application asserted

S_TERM or C_TERM and the target state machine is

waiting for the transaction to complete.

Miscellaneous Signals

PERRQ_N out

active

low

PERRQ_Nis a registered version of the PCI Bus PERR_IO
signal.

SERRQ_N out

active

low

SERRQ_Nis a registered version of the PCI Bus SERR_IO
signal.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Signal Description
INTR_N in

active

low

INTR_N signals an interrupt request from the user appli-

cation. The assertion of this signal generates an interrupt

request on the PCI Bus unless the interrupt disable bit of

the command register is set. Once the INTR_N signal is

asserted, the user application must keep it asserted until

the device driver clears the interrupt. This mechanism is

implementation dependent.

KEEPOUT in KEEPOUT isolates the internal ADIO bus from the PCI

LogiCORE interface. This allows the user application to

perform data transfer over ADIO without interference.

When using KEEPOUT, assert S_TERM and C_TERM, and

deassert S_READY and C_READY to terminate all

incoming transfer attempts with retry.

CSR[15:0] out CSR[15:0]  provides access to the command register

state bits. These bits are directly set or reset through the

system configuration software. All values in the

command register are either registered or read-only.

Note: The bus master enable bit must be set in the

command register before the initiator can access the PCI

Bus. The I/O access enable bit and/or the memory access

enable bit must be set in the command register before the

target will respond.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description

0 0 00000000
15 10Reserved 9 8 7 6 5 4 0123

Fast Back-to-Back Enable

I/O Access Enable

Memory Access Enable

Bus Master Enable

Monitor Special Cycles

Memory Write and Invalidate Supported

VGA Palette Snoop Enable

Report Parity Errors

Reserved

SERR  Enable

X8100

11

Interrupt Disable
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Signal Description
CSR[31:16] out CSR[31:16]  provides access to the status register state

bits. These are set automatically by the LogiCORE PCI

interface. Individual status bits are reset by the system

software by writing a ‘1’ to the bit location to be reset. All

values in the status register are either registered or read-

only. Fast back to back transactions are not supported.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description

1631 Reserved30 29 28 27 26 25 21222324

66 MHz Capable

Signaled System Error

Received Master Abort

Received Target Abort

Signaled Target Abort

Device Select Timing
[10] = slow, [01] = medium

Data Parity Error Detected

Fast Back-to-Back Capable

Capabilities List

X8295

Detected Parity Error

20

0 0 000

1819

Interrupt Status
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Signal Description
CSR[39:32] out CSR[39:32]  provides access to the transaction status

signals. These are an extension of the standard command

and status register bits and reflect the status of a PCI

transaction.

With the exception of “master abort”, these status bits

reflect any bus activity, as they are derived from regis-

tered copies of PCI Bus signals. It is important to note

that CSR[38:32]  are combinational outputs generated

by the equations shown below.

SUB_DATA[31:0] in SUB_DATA[31:0]  performs one of two functions

depending on the PCI interface configuration. If the inter-

face is not configured to use external Subsystem ID, this

input provides the CardBus CIS Pointer data. If the inter-

face is configured to use external Subsystem ID, this

input provides the Subsystem ID data.

System Signals

CLK out CLK is the PCI Bus clock driven by a global clock buffer.

Use this clock for all flip-flops that are synchronized to

the PCI Bus clock.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description

39 38 37 36 35 34 3233

!IRDYQ_N * !TRDYQ_N

FRAMEQ_N * !STOPQ_N

STOPQ_N * FRAMEQ_N * !TRDYQ_N

FRAMEQ_N * (!TRDYQ_N + !STOPQ_N)

X8182

TRDYQ_N * !STOPQ_N * !DEVSELQ_N

!TRDYQ_N * !STOPQ_N * !DEVSELQ_N

DEVSELQ_N * !STOPQ_N
Master Abort

Data Transfer

Target Abort

Disconnect With Data

Disconnect Without Data

Target Termination

Normal Termination

Transaction End
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Signal Description
RST out RSTis an inverted copy of the PCI Bus reset signal. This

signal should be used as an asynchronous reset signal for

the user application.

64-bit Extension

REQ64Q_N out

active

low

REQ64Q_N is a registered version of the PCI Bus

REQ64_IO signal.

ACK64Q_N out

active

low

ACK64Q_N s a registered version of the PCI Bus

ACK64_IO signal.

ADIO[63:32] t/s ADIO[63:32]  is a time multiplexed address and data

bus. This bus must be driven using internal three-state

buffers.

S_CYCLE64 out S_CYCLE64indicates that the PCI interface is engaged in

a 64-bit target transaction. This signal is asserted at the

same time as BASE_HIT and remains asserted until the

transaction is complete.

S_CBE[7:4] out S_CBE[7:4]  indicates the current PCI Bus command or

byte enables for a target access. Note that byte enables are

active low.

REQUEST64 in REQUEST64is used to request a 64-bit PCI initiator trans-

action. Assertion of REQUEST64 causes the PCI interface

to assert REQ_O if the bus master enable bit (CSR2) is set

in the command register. This bit is cleared at reset.

M_FAIL64 out M_FAIL64  indicates that a 64-bit initiator transfer

attempt has encountered a 32-bit target. In such situa-

tions, the initiator will transfer at most two 32-bit words

before terminating the transfer.

The M_FAIL64  signal should be used to adjust the incre-

ment value (step size) of initiator address pointers.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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Special Requirements
In general, the signals which interface the LogiCORE PCI interface to

the user application may be connected as required by the application.

However, certain signals have special connectivity requirements. To

ensure a successful design, follow the design rules listed below.

• Any output signals from the LogiCORE PCI interface may

remain unconnected if they are unused.

• The user application must connect to the full width of the internal

ADIO address and data bus. Do not leave ADIO unconnected.

• All bits of the LogiCORE PCI interface configuration bus, CFG,

must be driven by power or ground.

• Most input signals to the LogiCORE PCI interface that are

unused or disabled may be connected to power or ground, as

appropriate. However, the following signals must never be tied

to power or ground: SLOT64, S_TERM, S_READY, S_ABORT,
COMPLETE, M_READY, and M_WRDN.

Note: The fourth rule is of most importance. The first three design

rules are trivial and do not require much attention during the design

of a user application.

Signals are often explicitly tied to power or ground through assign-

ment statements, but can “accidentally” be tied to power or ground

through optimization of the driving logic.

In cases where the user application would normally assign one of

these signals to power or ground, drive the signal from the output of

a flip-flop.

For example, in place of:

SLOT64 in SLOT64 is used to enable the 64-bit extension. Refer to

the appropriate implementation guide for details.

M_CBE[7:4] in M_CBE[7:4]  is used by the initiator to drive byte

enables during initiator transactions. Note that byte

enables are active low.

Table 2-2  User Interface Signals (Continued)

Signal Name Type Functional Description
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assign WHATEVER = 1’b0;

Use the following:

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized

if (RST) WHATEVER = 1’b1;

else WHATEVER = 1’b0;

end

The above requirements stem from the fact that certain pieces of logic

inside the LogiCORE PCI interface, which are connected to these

signals, must not be optimized or reduced. Following the rules

presented above will prevent such undesired optimization.
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Chapter 3

General Design Guidelines

This chapter describes the steps required to turn a LogiCORE PCI

interface into a fully-functioning design integrated with user applica-

tion logic. A target-only design does not require any of the initiator

steps. However, an initiator always requires the target interface. The

burst support steps may require four separate sub-steps: read and

write operations for both target and initiator. Follow the logic design

guidelines in this manual carefully.

Design Steps
• Configure the Base Address Register(s). Read the “Customizing

the LogiCORE PCI Interface” chapter of this guide.

• Configure the contents of the Configuration Space Header ROM.

This is covered in the “Customizing the LogiCORE PCI Inter-

face” chapter of this guide.

• Configure the PCI interface options, also covered in the “Custom-

izing the LogiCORE PCI Interface” chapter of this guide.

Target Designs
• Build an interface to read and write locations in the user applica-

tion. Read the “Target Data Transfer and Control” chapter of this

guide.

• Create logic to signal various target termination conditions if

required by the user application. Read the “Target Data Phase

Control” chapter of this guide.

• Read the “Target 64-bit Extension” chapter of this guide if the

target uses the 64-bit extension. Read the “Target Only Designs”

chapter of this guide if the design is target only.
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Initiator Designs
• Build an initiator control state machine and the required support

logic, and an interface to read and write locations in the user

application. Read the “Initiator Data Transfer and Control”

chapter of this guide.

• Create logic to control initiator data phases. See the “Initiator

Data Phase Control” chapter of this guide.

• Read the “Initiator 64-bit Extension” chapter of this guide if the

initiator uses the 64-bit extension.

Burst Designs
• Provide pipelined data sources which correctly respond to

various target and initiator termination conditions, and build an

address counter. Read the “Target Burst Transfers” chapter of this

guide and the “Initiator Burst Transfers” chapter of this guide.

• Build FIFOs for the specific application, if required.

Advanced Designs
• Implement configuration space registers to support additional

features and capabilities, if required. Read the “Other Bus

Cycles” chapter of this guide.

• Modify the initiator or target logic to support special bus

commands, if desired. Read the “Other Bus Cycles” chapter of

this guide.

• Modify design to support operation as a host bridge, if required.

Read the “Other Bus Cycles” chapter of this guide.

Know the Degree of Difficulty
A fully compliant PCI interface is challenging to implement in any

technology and especially so in FPGA devices.

Table 3-1, "Degree of Difficulty for Various PCI Implementations"

indicates the degree of difficult in implementing various types of PCI

designs. The degree of difficulty is sharply influenced by:

• Maximum system clock frequency
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• Targeted device architecture

• Nature of the user application

All PCI implementations need careful attention to system perfor-

mance requirements. Pipelining, logic mapping, placement

constraints, and logic duplication are all methods that help boost

system performance.

Carefully review Table 3-1, "Degree of Difficulty for Various PCI

Implementations" to determine the level of difficulty associated with

different designs.

Understand Signal Pipelining
In order to meet the stringent PCI performance requirements, the

LogiCORE interface pipelines all of the bus control signals and the

data path. Consequently, some signals must be presented up to two

clock cycles before they appear on the PCI Bus. Likewise, arriving

signals are captured and available to the user application one cycle

after they appear on the PCI Bus. Figure 3-1, "Signal Pipeline Delay"

provides some basic guidelines on how the LogiCORE interface is

pipelined.

Table 3-1 Degree of Difficulty for Various PCI Implementations

Device Family
System Clock

Frequency
Difficulty

Virtex

Spartan-II

33 MHz Easy

66 MHz Difficult

Virtex-E

Spartan-IIE

33 MHz Easy

66 MHz Moderate

Virtex-II

Virtex-II Pro

Spartan-III

33 MHz Easy

66 MHz Moderate
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Figure 3-1 Signal Pipeline Delay

When the PCI interface receives a signal, it is captured in an input

flip-flop to guarantee the setup time required by the PCI Local Bus
Specification. The signal is available to the user application one clock

cycle after it appears on the PCI Bus. For example, data is captured in

input flip-flops and becomes available on the ADIO internal bus one

cycle after it appeared on the PCI Bus. Signals like M_DATA_VLD and

S_DATA_VLD signal the user application to grab the value from the

ADIO bus.

When the user application is sending a combinational signal, the

signal must be presented one cycle before it is to appear on the PCI

Bus. Most of the outputs connected to the PCI Bus originate from an

output flip-flop to meet the clock-to-output specification. If the signal

first originates from a register in the user application, then the

register inputs must be presented two cycles before the signal is to

appear on the PCI Bus.

Keep it Registered
The best method to simplify timing and increase system performance

in an FPGA design is to keep everything registered. This means that

all inputs and outputs from the user application should come from,

or connect to, a flip-flop. While registering signals may not be

possible for all paths, it simplifies timing analysis.
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Recognize Timing Critical Signals
Watch the timing and loading on the signals listed below. Some of

these signals are part of the critical timing path. The following list of

signals are timing critical and may require special attention when

used in the user application.

• M_SRC_EN and S_SRC_EN – these signals are combinational

outputs of the interface and are the two most time critical signals

passed to the user application.

• ADDR_VLD – this is a heavily loaded signal.

• M_DATA_VLD and S_DATA_VLD – these become heavily loaded

in most user applications.

• C_READY, M_READY, and S_READY – these connect to the target

and initiator state machine control logic through multiple layers

of logic. Drive C_READY, M_READY, and S_READY from a flip-

flop, if possible.

• C_TERM and S_TERM – these signals connect to the target state

machine control logic through multiple layers of logic. Drive

C_TERM and S_TERM from a flip-flop, if possible.

• COMPLETE – this signal drives critical logic in the initiator state

machine. Pay special attention to reducing delay for this signal.

• M_ADDR_N – this signal connects to the output enables driving

the initiator start address onto the ADIO internal bus.

Use Supported Design Flows
The LogiCORE PCI interface uses a variety of advanced software

features to obtain PCI system performance. These advanced features

may include using a “guide file” to direct the placement and routing

of timing-critical logic.

A guide file is a fragment of a full design. This fragment guarantees

the performance of timing-critical PCI control signals in the target

and initiator state machine logic. Guide files are carefully hand-

crafted to achieve maximum performance.

The PAR (place and route) program matches logic and routing in the

final PCI design to logic and routing in the hand-crafted guide file.

Individual logic blocks and nets are matched by their instance name
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and connectivity. For this reason, it is very important that the names

used in the final design match those used in the guide file. If the

names do not match, then PAR will not be able to guide the full

design. Consequently, PAR may not be able to achieve the required

PCI performance.

To guarantee that critical instance names and net names match those

used in the guide file, the design must be processed using a

supported design flow. Refer to the LogiCORE PCI Implementation
Guide for a list of supported design flows.

Make Only Allowed Modifications
The LogiCORE PCI interface is not user-modifiable. Do not make

modifications as they may have adverse effects on system timing and

PCI protocol compliance. All modifications to the LogiCORE PCI

interface must be done via the web-based Configuration and Down-

load Tool or by hand editing the configuration file.
3-6 Xilinx Intellectual Property Solutions



Chapter 4

Customizing the LogiCORE PCI Interface

This chapter describes the how to modify the LogiCORE PCI Inter-

face. Modifications to the pcim_lc module are not allowed and may

cause designs to fail timing specifications.

Using the Web-Based PCI Configuration Tool
There are two ways to modify the LogiCORE PCI interface. Select the

method which is most appropriate.

The first method is to use the web-based PCI Configuration and

Download Tool. This tool will automatically generate an appropriate

HDL configuration file through a web-based application. It is avail-

able at:

http://www.xilinx.com/products/logicore/pci

Please see the on-line help for further details on how to use the PCI

Configuration and Download Tool. This method is preferred when

starting a new design.

The second method is to edit the configuration file by hand using a

text editor. For small changes, this method is preferred. Users who do

not have access to the web will also need to follow this method. The

following sections describe how to modify the configuration file.

Editing the Configuration File
All recommended modifications can be made in the appropriate

configuration file (cfg.v  or cfg.vhd ). The options selected in this

module are communicated to the PCI interface through a 256-bit bus.

Changes in the configuration file affect both the design and the func-

tional simulation model.
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Constant Declarations
A number of constant declarations are made at the beginning of the

configuration file. Some of them are listed here; see the configuration

file for a complete list. Use these in the subsequent sections to set the

desired features.

`define MEMORY 1'b0
`define IO     1'b1

`define SPACE32 1'b0
`define SPACE64 1'b1

`define DISABLE  1'b0
`define ENABLE   1'b1

`define PREFETCH    1'b1
`define NOFETCH     1'b0
`define IO_PREFETCH 1'b1

`define TYPE00     2'b00
`define TYPE01     2'b01
`define TYPE10     2'b10
`define IO_TYPE    2'b11

`define SIZE2G     32'h8000_0000
.
. (see the configuration file for a complete list)
.
`define SIZE16     32'hffff_fff0

Device and Vendor ID
The Device ID is a unique identifier for the application. This field can

be any value. Change this value for the application.

// Device ID and Vendor ID
assign CFG[151:120] = 32'h4062_10ee ;

The Vendor ID identifies the manufacturer of the device or applica-

tion. Valid identifiers are assigned by the PCI Special Interest Group

to guarantee that each identifier is unique. The value 10EEh,

provided in the default configuration, is the Vendor ID for Xilinx.

Enter a vendor identification number here. The value FFFFh is

reserved.
4-2 Xilinx Intellectual Property Solutions



Customizing the LogiCORE PCI Interface
Class Code and Revision ID
The Class Code identifies the general function of a device. The value,

as provided in the default configuration, identifies the device as a

generic co-processor function.

// Class Code and Revision ID
assign CFG[183:152] = 32'h0B40_0000 ;

The Class Code is divided into three byte-size fields as described in

the PCI Local Bus Specification. The upper byte broadly identifies the

type of function performed by the device.

The middle byte defines a sub-class that more specifically identifies

the device’s function. The sub-classes are defined in Appendix D of

the PCI Local Bus Specification.

The lower byte defines a specific register-level programming inter-

face (if any). This allows device-independent software to interact

with the device.

The Revision ID indicates the revision of the device or application. It

is an extension of the Device ID. Enter the values appropriate for the

application.

Subsystem Vendor ID and Subsystem ID
The Subsystem Vendor ID further qualifies the manufacturer of the

device or application. Enter a Subsystem Vendor ID here; typically, it

is the same as the Vendor ID. Setting it to 0000h  may cause issues

with compliance testing. The Subsystem ID can be set as desired to

identify the device, revision, or other manufacturing data.

// Subsystem ID and SubVendor ID
assign CFG[215:184] = 32'h4062_10ee ;

By default, the Subsystem Vendor ID and Subsystem ID are set at

design time and part of the resulting interface netlist.

// External Subsystem ID and Subvendor ID
assign CFG[114] = `DISABLE ;

Enabling the External Subsystem ID allows these fields to be dynamic

and supplied by the user application through the SUB_DATA bus.

This may be used to load unique values which are determined by the

user application at run-time. When this feature is enabled, the

CardBus CIS Pointer is disabled and always set to zero.
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CardBus CIS Pointer
The CardBus CIS Pointer is used in CardBus applications. By default,

this field is supplied through the SUB_DATA bus. If the CardBus CIS

Pointer is not used, the SUB_DATA bus should be set to zero. If the

interface is configured to use an external Subsystem Vendor ID and

Subsystem ID via SUB_DATA, the CardBus CIS Pointer is disabled

and always set to zero.

Base Address Registers
The LogiCORE PCI interface supports up to three BARs (Base

Address Registers). The designer is free to use any BAR desired. Each

BAR has several attributes. These attributes define:

• Whether the BAR is enabled. Disabling the BAR allows the opti-

mization tools to delete the entire circuit.

• The size of the address space required. In the LogiCORE inter-

face, the address space can be as small as 16 bytes, or as large as

two gigabytes. For 80x86 systems, the maximum allowed I/O

space is 256 bytes.

• The ability of memory space to be prefetched. The PCI Local Bus
Specification defines memory as prefetchable if:

• there are no side-effects on reads (i.e. data will not be

destroyed by reading, as from a RAM).

• byte write operations can be merged into a single double-

word write, when applicable.

• Whether the address space is defined as memory or I/O. The

BAR will only respond to commands that access the specified

address space.

• The address space location “preference” of the device. The Logi-

CORE interface supports 32-bit address spaces for both memory

and I/O.

• Whether the BAR address space is defined as 64-bit capable. This

only applies to memory spaces.

Generally, memory spaces less than 4K in size should use a 4K block

size, as recommended in the PCI Local Bus Specification. The

maximum I/O space allowed is 256 bytes. Some machines may
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disable a card if it requests more than 256 bytes of contiguous I/O

space.

// BAR0 -- 64-Bit Capable, 1 Mb Memory Space
assign CFG[0]       = `ENABLE ;
assign CFG[32:1]    = `SIZE1M ;
assign CFG[33]      = `PREFETCH ;
assign CFG[35:34]   = `TYPE00 ;
assign CFG[36]      = `MEMORY ;
assign CFG[241]     = `SPACE64 ;

// BAR1 -- 1 Mb Non-Prefetchable Memory Space
assign CFG[37]      = `ENABLE ;
assign CFG[69:38]   = `SIZE1M ;
assign CFG[70]      = `NOFETCH ;
assign CFG[72:71]   = `TYPE00 ;
assign CFG[73]      = `MEMORY ;
assign CFG[242]     = `SPACE32 ;

// BAR2 -- 16 Byte I/O Space
assign CFG[74]      = `ENABLE ;
assign CFG[106:75]  = `SIZE16 ;
assign CFG[107]     = `IO_PREFETCH ;
assign CFG[109:108] = `IO_TYPE ;
assign CFG[110]     = `IO ;
assign CFG[243]     = `SPACE32 ;

Max_Lat, Min_Gnt, and Latency Timer
These registers are used to specify the desired latency timer settings.

Max_Lat specifies how often the device needs to gain access to the

PCI Bus. Min_Gnt specifies how long the minimum burst period

should be, assuming a 33 MHz bus speed. The values for both regis-

ters are periods of time in units of a quarter microsecond.

// Max_Lat
assign CFG[231:224] = 8'h0f ;
// Min_Gnt
assign CFG[223:216] = 8'h0f ;

These registers are intended for use by the system software and do

not directly affect the operation of the LogiCORE PCI interface.

For applications that do not support bursting or that burst only two

words, the Latency Timer function can be disabled. This saves addi-

tional logic and routing resources.
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// Latency Timer Enable
assign CFG[112] = `ENABLE ;

Interrupt Enable
This turns on the interrupt registers in the LogiCORE PCI interface.

The interface only supports INTA_O.

// Interrupt Enable
assign CFG[113] = `ENABLE ;

Capabilities List
The LogiCORE PCI interface has the ability to implement a Capabili-

ties List in configuration space. If the design requires a Capabilities

List, enable this option and set the pointer to the desired address in

configuration space. Otherwise set it to zero. Also enable the User

Config Space option.

// Capabilities List Enable
assign CFG[116] = `DISABLE ;
// Capabilities List Pointer
assign CFG[239:232] = 8'h00 ;
// User Config Space Enable
assign CFG[118] = `DISABLE ;

Note: The User Config Space option may be enabled without using a

Capabilities List to implement user-defined registers.

Interrupt Acknowledge
This bit enables the PCI interface to respond to interrupt acknowl-

edge cycles as a target. Enabling this feature disables the last avail-

able Base Address Register.

// Interrupt Acknowledge
assign CFG[240] = `DISABLE ;

Reserved Settings
Several option settings are reserved for implementation specific

features or for backwards compatibility. Do not modify these option

settings. The following are reserved and should not be modified.
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Chapter 5

Target Design Tips

This chapter describes some of the design issues involved in building

the target portion of an application. Before building the target portion

of a user application, carefully consider what it must accomplish.

Typically, there are multiple ways to achieve the same functionality.

Determine the Address Space Required
There is no central address decoding performed in a PCI system.

Instead, the address decoding is distributed across the various agents

present in the system.

A target design may request up to three separate address spaces of

differing types and sizes. These selections are made when the base

address registers in the PCI interface are configured for the user

application. How should the user application allocate address space?

Where I/O space is required for PC legacy support, the use of an I/O

base address register is unavoidable. In general, it is best to use base

address registers located in memory space for several reasons. They

support target burst, larger address spaces, prefetchable reads, and

64-bit data transfers.

User application design complexity increases with multiple base

address registers, particularly if each address space responds to

transactions in a different manner.

Determine the Bandwidth Required
The PCI interface supports both single and burst transfers. What type

of bandwidth is required when other bus agents access the user

application?
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Currently, support for bursting to targets is poor in desktop PC chip

sets. Additionally, the host bridge is involved in most, if not all, trans-

actions (as either the initiator or the target). If the user application is

intended for use in PC systems, higher bandwidth may be achieved

by using single target transfers to set up an initiator burst transfer.

In embedded systems, it may be the case that the host bridge is used

for configuration transactions only, and after configuration, agents on

the bus burst data to each other in peer-to-peer transactions. In this

case, it is critical to support target burst to achieve high bandwidth.

Where high bandwidth is desirable in a target design, posted writes

and prefetched reads are two methods to increase bandwidth. These

techniques are discussed in the PCI Local Bus Specification. Posted

write buffers are generally easy to implement with FIFOs in a user

application. Prefetched reads are more complicated in nature and

require additional design considerations when the user application

data source is not prefetchable.

Assemble the Design
The fundamentals of a target design are covered in the “Target Data

Transfer and Control” chapter of this guide. The material covered in

that chapter is sufficient for implementing non-burst transfers to

registers and peripherals in the user application.

For more elaborate designs, the “Target Data Phase Control” chapter

of this guide presents information on inserting target wait states and

generating different types of target termination. This information is

useful for both non-burst and burst designs.

For burst designs, the “Target Burst Transfers” chapter of this guide

demonstrates the additional logic required to support target burst

transfers. The “Target 64-bit Extension” chapter of this guide

discusses the use of the 64-bit extension for increased performance.

Note that the LogiCORE PCI interface is both a target and an initiator.

In designs where the initiator functions are unused, the initiator

control signals must be “tied off” to benign values. The “Target Only

Designs” chapter in this guide discusses how to do this.
5-2 Xilinx Intellectual Property Solutions



Chapter 6

Target Data Transfer and Control

The purpose of this chapter is to demonstrate the logic required in the

user application to generate the load and output enable signals for a

typical target register.

In applications not using target burst transactions, data is usually

transferred to and from registers in the user application. These regis-

ters are connected to control signals required for target data transfer

and to any additional control and data path logic provided by the

user. These registers may also connect to internal FIFOs or to I/O

pins on the user application.

Figure 6-1 Example Target Register

A typical target register is interfaced as shown in Figure 6-1,

"Example Target Register".

Target Interface Signals
The following signals control target data transfer to and from the PCI

interface. For basic transfers, only a subset of these signals need be

used. An example of a basic target design using this reduced subset is

presented later in this chapter.

X8289
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ADIO[31:0]

OE

LOAD

CLK
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More elaborate designs involving non-deterministic target termina-

tion, target wait state insertion, or target burst are covered in later

chapters. Note that references to inputs and outputs are made with

respect to the user application.

• BASE_HIT[7:0]  -- this input indicates that one of the base

address registers recognizes that it is the target of a current PCI

transaction. This is the first indicator to the user application that a

target transaction is about to begin.

• ADIO[31:0]  -- this bidirectional bus provides the means for

data and address transfer to and from the PCI interface.

• ADDR[31:0]  -- this input is a registered version of the PCI

address provided by the PCI interface. It becomes valid in the

cycle after ADDR_VLD is asserted, and remains valid through the

entire transaction.

• ADDR_VLD-- this input indicates that a valid PCI address is avail-

able on the ADIO bus, and may be used as a clock enable by the

user application to capture a copy of this address. This is particu-

larly useful in target burst applications where a loadable counter

must track the target address. In non-burst applications, the

latched address present on the ADDR bus may suffice. Note,

however, that the assertion of ADDR_VLD does not mean that the

user application will be the selected target. The ADDR_VLDsignal

is asserted for a single cycle.

• S_WRDN -- this input indicates the direction of data transfer for

the current target transaction. Logic high indicates that the user

application is sinking data (i.e. target write). It is valid during the

cycle BASE_HIT is asserted and is held through the entire trans-

action.

• S_CBE[3:0]  -- this input is a registered version of the CBE_IO
lines, and is delayed by one cycle. It indicates the PCI command

and byte enables during a target transaction. This signal is used

primarily for byte enable information, as the command is

decoded and latched in PCI_CMDduring the address phase of the

transaction.

• PCI_CMD[15:0]  -- this input is a decoded and latched version

of the PCI command for the current bus transaction.

• S_DATA_VLD -- this input has two interpretations depending on

the direction of data transfer. When the user application is
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sinking data (target writes), S_DATA_VLD indicates that the user

application should capture valid data from the ADIO bus. When

the user application is sourcing data (target reads), S_DATA_VLD
indicates that a data phase has completed on the PCI Bus.

• S_SRC_EN -- this input is only used during target burst reads. It

indicates to the user application that the data source which drives

output data onto the ADIO bus must provide the next piece of

data. In most applications, this signals the user application to

advance the data pointer for the data source that is providing the

data.

• CSR[39:0]  -- this input provides general status information

about the PCI interface. The high eight bits provide status infor-

mation about the current transfer. This status information is used

primarily in target burst applications with non-prefetchable

sources to determine if any associated address pointers must be

“backed up”.

• S_READY-- this output from the user application indicates that it

is ready to transfer data, and can be used to insert wait states

during the first data phase of a transaction. Together with

S_TERM, it is also used to signal different types of target termina-

tion. It is important to note that the user application is prohibited

from using S_READY to insert wait states after the first data

phase.

• S_TERM -- this output from the user application indicates that

data transfer should cease. It is also used with S_READYto signal

different types of target termination.

• S_ABORT-- this output from the user application indicates that a

serious (fatal) error condition has occurred and that the current

transaction must stop.

The following signals are output by the target state machine in the

PCI interface. These states are defined in Appendix B of the PCI Local
Bus Specification.

• IDLE  -- this input indicates that the target state machine is in the

idle state and that there is no activity on the PCI Bus.

• B_BUSY -- this input indicates that the target state machine has

recognized the beginning of a PCI Bus transaction. The target

state machine will change to the S_DATA state if it determines

that it is the target of the transaction.
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• S_DATA -- this input indicates that the target state machine is in

the data transfer state.

• BACKOFF -- this input indicates that the target state machine is

waiting for a transaction to complete because the user application

has asserted S_TERM.

Decoding Target Transactions
The user application is responsible for monitoring outputs from the

PCI interface to respond to target transactions. The signals used in

target transactions are active and available at different times. The

most important signal is BASE_HIT[x] , which indicates that the PCI

interface has claimed the current PCI transaction for base address

register “x”. It is asserted for a single cycle. The following logic

decodes target reads and writes directed at base address register “x”.

always @(posedge CLK or posedge RST)

begin : decode

if (RST)

begin

BAR_x_RD = 1'b0;

BAR_x_WR = 1'b0;

end

else

begin

if (BASE_HIT[x])

begin

BAR_x_RD = !S_WRDN & OPTIONAL;

BAR_x_WR = S_WRDN & OPTIONAL;

end

else if (!S_DATA)

begin

BAR_x_RD = 1'b0;

BAR_x_WR = 1'b0;

end

end

end
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assign OPTIONAL = fn(PCI_CMD[15:0]) & fn(ADDR[31:0]);

The optional term is for sub-decode and allows the address space

allocated by a base address register to be mapped into multiple

regions. If the user application performs sub-decoding of the address

space, the above logic needs to be replicated to cover each region. Do

not generate “holes” in the address space. If desired, the user applica-

tion can also distinguish between different types of PCI read and

write commands.

The last clause in the decoding block holds the decode asserted

throughout the entire data transfer state. Again, BASE_HIT[x]  is

only active for a single clock cycle at the beginning of the transaction.

Effectively, the above code describes a synchronous set/reset flip-flop

with set dominant.

Target Writes
During a target write operation, data is captured from the ADIO bus

to a data register in the user application by asserting the load input.

The first step is to generate the BAR_x_WR signal as described in the

previous section on decoding target transactions.

The critical gating signal is S_DATA_VLD. It is the final signal

required to qualify the write operation. Consequently, the other

signals can be decoded earlier and gated with S_DATA_VLD. The

assignment for the load input of the register would then be:

assign LOAD = BAR_x_WR & S_DATA_VLD;

Decoding BAR_x_WR and registering it before the assertion of

S_DATA_VLD allows more time for routing and reduces the number

of logic levels from the critical input, S_DATA_VLD. If the user appli-

cation supports byte-addressable registers, separate load signals

should be generated for each byte in the register by further gating the

expression shown above. The S_CBE signals are available for this

purpose.

The time relationship is shown in the waveform of Figure 6-2, "Target

Write Transaction". This waveform includes both PCI Bus signals and

internal user application signals.
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Figure 6-2 Target Write Transaction

Target Reads
During a target read operation, data from the user application is

driven onto the ADIO bus. To do this, the user application must assert

the output enable for the desired register. The first step is to generate

the BAR_x_RD signal as described in the previous section on

decoding target transactions. The assignment for the output enable

would then be:

assign OE = BAR_x_RD & S_DATA;

Note: Ensure that all output enables are deasserted at system reset to

avoid possible bus contention.

Do not qualify the output enable signal with the S_CBE signals even

if the user application supports byte-addressable registers; drive the

entire ADIO bus with valid data.

Although S_DATA_VLD is not used in the output enable logic, the

user application may monitor this signal during target reads. The

assertion of S_DATA_VLD during a target read indicates that the initi-
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ator has acknowledged the data transfer. This is useful in designs

where a data source must change state after it is read.

The time relationship is shown in the waveform of Figure 6-3, "Target

Read Transaction". This waveform includes both PCI Bus signals and

internal user application signals.

Figure 6-3 Target Read Transaction

Terminating Target Transactions
In general, PCI transactions may be terminated by the initiator or the

target. In the specific case of non-burst target transactions, the PCI

interface must terminate the transaction after the first data phase

even if the initiator wishes to continue. Target terminations are

controlled using the S_READY, S_TERM, and S_ABORT signals.

The S_READY, S_TERM, and S_ABORT signals must not be assigned

static values. For timing reasons, these signals should be driven from

the output of a flip-flop, although it is permitted to drive these signals

from combinational logic.

Note: Never tie these signals to logic one or to logic zero.
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The best way to achieve termination after the first data phase is to

instruct the PCI interface to always disconnect with data:

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_a

if (RST) S_ABORT = 1’b1;

else S_ABORT = 1’b0;

end

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_b

if (RST) S_READY = 1’b0;

else S_READY = 1’b1;

end

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_c

if (RST) S_TERM = 1’b0;

else S_TERM = 1’b1;

end

This will cause all target transactions to terminate after a single data

phase. This termination behavior is exhibited in the target write and

read transactions shown in Figure 6-2, "Target Write Transaction" and

Figure 6-3, "Target Read Transaction".

This type of deterministic termination is sufficient for simple user

application designs that do not support non-deterministic target

termination, target wait state insertion, or target burst. More informa-

tion about various target termination options is presented in later

chapters.
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Target Data Phase Control

This chapter discusses the mechanism by which the user application

can control various aspects of target transactions to accommodate its

own ability to source or sink data.

Target initiated wait states allow a user application additional time

before the first data transfer, and target initiated terminations allow

the user application to limit the number of data phases in a transac-

tion. These features are useful in both burst and non-burst target

designs.

Control Modes
Data phase control is achieved using the S_TERM and S_READY
signals. Combinations of the two control signals yield the following

four modes:

• Wait -- the wait mode inserts wait states at the beginning of a PCI

Bus transaction (holds off the first data phase) by delaying the

assertion of TRDY_IO by the PCI interface.

• Normal -- the normal mode allows PCI Bus data phase(s) to

complete without the insertion of extra wait states or termination

by the target.

• Disconnect without data -- this mode terminates the current PCI

Bus transaction without data transfer on the final data phase. A

disconnect without data on the first data phase is equivalent to a

retry.

• Disconnect with data -- this mode terminates the current PCI Bus

transaction with data transfer on the final data phase.

The exact disconnect sequence is affected by whether or not the initi-

ator also terminates the transaction. The PCI interface will automati-
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cally generate the correct behavior. Note that the PCI interface will

immediately disconnect with data if it receives a transaction using the

non-linear addressing mode.

Table 7-1, "Data Phase Control Signals for Targets", shows the four

modes of operation and the corresponding S_TERM and S_READY
values.

Changing from one mode to another must not be done in arbitrary

sequence. In addition, the timing of mode transitions is critical to

ensure precise control over the number of data phases that occur in a

transaction, particularly when changing to a disconnect mode.

The permitted data phase control sequences for target designs using

the PCI interface are shown in Figure 7-1, "Permitted Data Phase

Control Sequences". The exact timing details are covered in subse-

quent sections of this chapter.

Table 7-1  Data Phase Control Signals for Targets

Condition Bus Signals
From User Application

S_TERM S_READY

Wait TRDY_IO = 1
DEVSEL_IO = 0

STOP_IO = 1

Low Low

Normal TRDY_IO = 0
DEVSEL_IO = 0

STOP_IO = 1

Low High

Disconnect

Without Data

(Retry)

TRDY_IO = 1
DEVSEL_IO = 0

STOP_IO = 0

High Low

Disconnect

With Data

TRDY_IO = 0
DEVSEL_IO = 0

STOP_IO = 0

High High
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Figure 7-1 Permitted Data Phase Control Sequences

Note that the Wait mode cannot be used to insert wait states during

arbitrary data phases in a transaction. It may only be used to delay

the completion of the first data phase of a transaction. This is called

initial latency. The target is required to complete the first data phase

of a transaction within 16 clocks from the assertion of FRAME_IO. The

user application is responsible for observing this requirement.

Note: During target state machine activity, do not violate the mode

sequencing shown above. When the target state machine is inactive,

S_TERM and S_READY are ignored by the PCI interface.

Control Pipeline
In order to meet the stringent PCI Bus performance requirements, the

PCI interface pipelines all of the bus control signals and the data

path. Consequently, the S_TERM and S_READY signals must be

presented one cycle in advance of the desired effect. See  Figure 7-2,

"Control Signal Pipeline Delay" for a graphical interpretation.

W = Wait N = Normal D = Disconnect

Tranaction
Start W N D Tranaction

End

X8276
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Figure 7-2 Control Signal Pipeline Delay

The signals S_TERMand S_READYconnect to the target state machine

through multiple levels of logic. For this reason, it is highly recom-

mended that these signals are driven directly from the output of a

flip-flop. This adds an extra cycle of latency.

Deterministic Control
Deterministic control refers to cases where the initial response of a

user application to a target transaction does not depend on the

parameters of the transaction. That is, the logic that drives S_TERM
and S_READY does not use any information about the incoming

target transaction to control the initial data phase. Such information

includes, but is not limited to:

• Base address register number

• Target transaction address

• Target transaction command

In these cases, the user application knows how it will respond to a

target transaction before the transaction occurs or selects control

modes based on internal state information.

Deterministic control is easy to implement and simplifies timing

considerations. While it is possible to feed transaction specific infor-

mation back to the S_TERMand S_READYoutputs in time for the first

data phase, doing so results in driving S_TERM and S_READY with

several levels of combinational logic. This is not recommended.

X8277
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For deterministic control, the S_TERM and S_READY signals must be

set properly before any transaction begins (at the time BASE_HIT is

asserted). The following examples demonstrate S_TERM and

S_READY generation for several common cases.

Example 1: Always Ready, Single Transfers
A simple user application that does not perform target burst transac-

tions and is always ready to transfer data, as discussed in earlier

chapters, can instruct the PCI interface to automatically disconnect

with data on the first data phase.

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_a

if (RST) S_READY = 1’b0;

else S_READY = 1’b1;

end

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_b

if (RST) S_TERM = 1’b0;

else S_TERM = 1’b1;

end

An example of such an application is a bank of registers mapped in

memory or I/O space. The correct control is achieved by assigning

S_READY and S_TERM to values that result in disconnect with data,

as shown in Table 7-1, "Data Phase Control Signals for Targets".

Example 2: Always Ready, Burst Transfers
Another very simple method of control may be used where the user

application does perform target burst transactions and is always

ready. For this case, the user application can instruct the PCI interface

to proceed normally.

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_a

if (RST) S_READY = 1’b0;

else S_READY = 1’b1;
LogiCORE PCI Design Guide 7-5



Target Data Phase Control
end

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_b

if (RST) S_TERM = 1’b1;

else S_TERM = 1’b0;

end

This allows the initiator of a transaction to burst data at full speed

until it is done or its latency timer expires. The user application must

be capable of sourcing or sinking data at full speed. The target may

disconnect by adding logic to assert S_TERM. This behavior is

commonly found in target designs that perform posted writes.

Example 3: Initial Latency
This is similar to Example 1, with the addition of initial latency. The

initial latency may be fixed by a counter or may be variable and

determined by other internal state. In cases where the initial latency is

variable, the user application must not cause the PCI interface to

violate the PCI Local Bus Specification limit on initial latency. The

target is required to complete the first data phase of a transaction

within 16 clocks from the assertion of FRAME_IO.

The following Verilog pseudocode demonstrates how to insert initial

wait states:

always @(posedge CLK or posedge RST)

begin : bl_timer

if (RST) TIMER = 4'h0;

else if (ADDR_VLD) TIMER = BL_WAIT[3:0];

else if (TIMER != 4'h0) TIMER = TIMER - 4'h1;

end

assign S_READY = (TIMER <= 4'h3);

assign S_TERM = (TIMER <= 4'h3);

The start of any transaction on the PCI Bus is marked by the falling

edge of FRAME_IO. This information is needed to reload the initial

wait timer. A registered version of FRAME_IO is available to the user

application as FRAMEQ_N. However, this signal is heavily loaded
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within the PCI interface. Fortunately, ADDR_VLD is asserted with the

falling edge of FRAMEQ_N during target transactions, so ADDR_VLD
may be used instead.

At the beginning of all transactions, the logic sets S_TERM and

S_READY to the proper values in advance of target state machine

signalling a pending target transaction. In non-target transactions,

S_TERM and S_READY are simply ignored.

The latency is determined by the value present on BL_WAIT, and is

expressed in cycles after FRAME_IOis asserted. Note that the timeout

does not occur when the timer reaches zero. This is due to the latency

in detecting the start of a transaction and the latency involved in

propagating the S_TERMand S_READYsignals through the PCI inter-

face to the PCI Bus.

This example can easily be extended to allow multiple transfers, as

shown in Example 2, by removing the assignment for S_TERM and

adding the following:

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_b

if (RST) S_TERM = 1’b1;

else S_TERM = 1’b0;

end

Bounded initial latency is useful in user application designs that

access off chip registers or peripherals.

Example 4: Retries
In some user application designs, it may be necessary to retry target

transactions if the data source or sink cannot be ready within the

initial latency bounds given in the PCI Local Bus Specification. This

situation may arise with very slow peripherals or if the user applica-

tion implements delayed reads. In such cases, the initiator is bound

by PCI protocol to retry the original transaction at a later time.

When the user application is ready to transfer data, S_TERM and

S_READY may be generated as required. The following Verilog

pseudocode provides an example, using the BLAT_RDY signal gener-

ated from Example 3:

always @(posedge CLK or posedge RST)
LogiCORE PCI Design Guide 7-7



Target Data Phase Control
begin : keep_it_registered

if (RST)

begin

S_READY = 1’b1;

S_TERM = 1’b0;

end

else

begin

S_READY = RETRY ? 1’b0 : BLAT_RDY;

S_TERM  = RETRY ? 1’b1 : BLAT_RDY;

end

end

assign RETRY = fn(PERIPHERAL_STATE);

This code generates retries if the peripheral is not ready. If the periph-

eral is ready, the user application disconnects with data after several

cycles of initial latency.

Care must be taken to ensure that RETRY is valid before the initial

data phase of a target transaction and that it does not change during

the transaction. One method to produce this result is to sample the

peripheral state at the beginning of each PCI Bus transaction, in the

same way that the initial latency timer is loaded in Example 3.

Other Possibilities
These examples are only a subset of the possible data phase control

schemes. The ideas presented above may be combined in many ways

to control the flow of data across the target interface so that the data

rate is acceptable to the user application.

Note: Do not forget to account for the latency in S_TERM and

S_READY. This latency is two cycles if S_TERM and S_READY are

registered inside the user application, as is recommended. Otherwise,

the latency is one cycle.
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Non-Deterministic Control
Non-deterministic control refers to cases where the initial response of

a user application to a target transaction depends on the parameters

of the transaction. Such information includes, but is not limited to:

• Base address register number

• Target transaction address

• Target transaction command

In these cases, the user application does not know how to respond to

a target transaction until the transaction has already started. The user

application must feed transaction specific information back to the

S_TERM and S_READY outputs in time for the first data phase. The

difficulty in this is created by the latency in S_TERMand S_READYas

discussed earlier in this chapter.

In order feed this information back in time to control the first data

phase, S_TERM and S_READY must be driven with combinational

logic and not from flip-flops. This is because the S_TERM and

S_READY must be presented in the same cycle that a target transac-

tion is detected (when a BASE_HIT signal is asserted). Although this

is not recommended, it is possible if the logic is very fast.

For non-deterministic control, the S_TERM and S_READY signals

must be presented as soon as one of the BASE_HIT signals is

asserted. That is, S_TERM and S_READY will be combinational func-

tions of BASE_HIT and other signals from the user application. The

restrictions shown in  Figure 7-1, "Permitted Data Phase Control

Sequences" still apply.

Driving S_READY and S_TERM with combinational logic is highly

discouraged for timing reasons. In cases where transaction specific

information must be fed back to the PCI interface to control the initial

data phase, an alternative method exists at the expense of perfor-

mance.

The solution is to insert a single wait state at the beginning of all

target transactions. The extra cycle in latency allows S_TERM and

S_READY to be registered. Although performance is reduced, poten-

tial timing problems are avoided.
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If, for performance reasons, the suggested method is not feasible, the

following examples illustrate how to drive S_TERM and S_READY
with combinational logic.

Example 5: Subdividing an Address Space
Consider a user application design where the address space assigned

to a base address register is partitioned into two regions. The first

region maps to a peripheral device which supports bursts but may

require retries, and the second region maps to registers that require

immediate disconnect with data. The data phase control signals for

the peripheral are P_READY and P_TERM, while the data phase

control signals for the registers are R_READY and R_TERM.

assign PERIPH_ADDR = fn(ADDR[31:0]);

assign RETRY = fn(PERIPHERAL_STATE);

assign P_READY = RETRY ? 1’b0 : 1’b1;

assign P_TERM = RETRY ? 1’b1 : 1’b0;

assign R_READY = 1’b1;

assign R_TERM = 1’b1;

assign S_READY = PERIPH_ADDR ? P_READY : R_READY;

assign S_TERM = PERIPH_ADDR ? P_TERM : R_TERM;

This logic can be greatly reduced. It is presented this form for clarity.

As in Example 4, care must be taken to ensure that RETRY is valid

during the cycle a BASE_HIT signal is asserted, and that it does not

change during the transaction.

As an alternative approach, use an additional base address register (if

available) instead of subdividing the address space of a single base

address register.

Example 6: Multiple Base Address Registers
Consider a user application design with two base address registers,

“x” and “y”. The first maps to a peripheral device which supports

bursts but may require retries, and the second maps to registers that

require immediate disconnect with data. In concept, this is similar to

Example 5 but is complicated by the fact that the BASE_HIT signals
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are only valid for a single cycle, unlike the ADDR bus which is valid

throughout a transaction.

always @(posedge CLK or posedge RST)

begin : similar_to_decode

if (RST) BAR_x_IN_USE = 1’b0;

else if (BASE_HIT[x]) BAR_x_IN_USE = 1’b1;

else if (!S_DATA) BAR_x_IN_USE = 1’b0;

end

assign PERIPH_ADDR = BASE_HIT[x] | BAR_x_IN_USE;

The final multiplexing logic, as shown in Example 5, would use this

version of PERIPH_ADDR as the select signal.

Target Abort
There is a special type of target termination called target abort. It

informs the initiator that the target cannot perform the requested

transaction.

A target abort is a serious error and signals that data may have been

lost or corrupted. A target must respond to an initiator burst beyond

its allocated address space with a target abort. Other fatal conditions

detected by the user application should also result in target abort.

When the S_ABORT signal is asserted from the user application, the

PCI interface automatically signals the target abort condition on the

PCI Bus and sets the signaled target abort bit (CSR27) in the status

register. The user application must continue to assert S_ABORT until

the transaction is complete.

The S_ABORT signal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop,

although it is permitted to drive it from combinational logic. When

target aborts are not used, drive the S_ABORTsignal as shown below:

always @(posedge CLK or posedge RST)

begin : not_using_abort

if (RST) S_ABORT = 1’b1;

else S_ABORT = 1’b0;

end
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Chapter 8

Target Burst Transfers

Performing a single data transfer across the PCI Bus is the simplest

type of transaction. However, because of the overhead of distributed

address decoding, this wastes valuable bus bandwidth. The perfor-

mance advantage in PCI is derived from burst transactions, where

two or more data words are transferred during the transaction.

Building a user application that supports single target transfers is the

easiest to design. Building a user application that supports target

burst transfers is significantly more complex, but worth the effort, if

maximum bandwidth is the goal.

Keeping Track of the Address Pointer
In a PCI transaction, only the starting address is broadcast over the

bus. For single transfers, this is sufficient. For burst transfers,

however, the user application must keep track of the current address.

If the user application performs target burst transfers, then it must

keep a local copy of the current address pointer and increment it after

every successful data transfer cycle. Luckily, this counter can be

small, depending on the address block size of the target (set in the

base address register). The counter must be able to support bursts

throughout the entire address range of the base address register.

For example, if the target decodes a 4 Kb block of memory space, then

the address counter needs to keep track of addresses within the 4 Kb

block. A 10-bit loadable binary counter will suffice. Although 4 Kb

requires 12-bits to cover the address space, bits 0 and 1 will always

equal zero for 32-bit transfers over the PCI Bus. If an initiator

attempts to burst beyond the 4 Kb block boundary, then the target

should issue a disconnect so that when the initiator resumes, the next

address does not fall in the range of this base address register.
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The upper 20 bits of the address pointer are a simple register, loaded

during the address cycle of the transaction when ADDR_VLD is
asserted. Likewise, the starting address within the address block is

loaded into the 10-bit binary counter during the address cycle. The

upper 20 bits, which are seldom required in the user application, can

be eliminated. See Table 8-1, "Example Target Address Pointer".

During target writes, the counter portion of the target address pointer

should be incremented when S_DATA_VLDis asserted. During target

reads, the address pointer should be incremented when S_SRC_ENis

asserted. A full example of the count enable logic is presented later in

this chapter.

If the user application supports multiple base address registers, a

single address pointer should suffice, but the counter must support

the largest block of address space. If one base address register

supports a 4 Kb block while the other supports a 16 Mb block, then

the counter must support the 16 Mb block, which requires a 22-bit

loadable binary counter.

Sinking Data in Burst Transfers
During target writes, the PCI interface transfers burst data using a

pipelined data path. The data valid signal, S_DATA_VLD, is used to

advance the target address pointer (and any other data pointers in the

user application logic). At the same time the target data pointer is

advanced, the user application also captures valid data from the

internal ADIO bus.

Using S_DATA_VLDto capture burst data is very similar to the simple

case of single transfers. The user application must enable different

registers or RAM addresses based on the target address pointer.

A target burst write is shown in the waveform of Figure 8-1, "Target

Burst Write Transaction". This waveform includes both PCI Bus

signals and internal user application signals.

Table 8-1 Example Target Address Pointer

31 12 11 2 1 0

20-bit address register

(optional)

10-bit loadable

binary counter

0 0
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Figure 8-1 Target Burst Write Transaction

Sourcing Data in Burst Transfers
During target reads, the PCI interface transfers burst data using a

pipelined data path. The data source enable signal, S_SRC_EN, is
used to advance the target address pointer (and any other data

pointers in the user application logic). The result is that the user

application drives new data onto the internal ADIO bus.

Internally, the PCI interface captures the data value provided by the

user application on the ADIO bus and holds this value in the output

flip-flops driving the AD_IO pins. The user application then presents

the next data word on ADIO, instead of holding the previous data

word until the current data phase completes. This approach results in

higher data throughput.

A target burst read is shown in the waveform of Figure 8-2, "Target

Burst Read Transaction". This waveform includes both PCI Bus

signals and internal user application signals.
LogiCORE PCI Design Guide 8-3



Target Burst Transfers
Figure 8-2 Target Burst Read Transaction

Using S_SRC_ENto present data for the next data phase may require

additional control logic depending on the type of data source present

in the user application. Keep in mind that the S_SRC_EN signal

advances the target address pointer in anticipation of the next data

phase, which may or may not complete with successful data transfer.

If the target address pointer is advanced, and the data is never trans-

ferred, then the user application must decide what to do with the

non-transferred data. In the case of prefetchable data sources, such as

RAM or a register file, the data can be discarded. The original data

remains in the RAM or the register file for future use.

This also applies in cases where a FIFO is used as a rate matching

buffer and the contents of the FIFO are flushed after a transaction.

Any non-transferred data is discarded from the FIFO, but the original

data still remains in the source that originally provided it. This tech-

nique is used in designs that implement PCI delayed read requests.

For non-prefetchable data sources, as is the case when a FIFO itself is

the data source, pulling data out of the FIFO may be destructive. The
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unused data must be restored so it is available for future use should it

not be transferred. This may require decrementing internal counters

or keeping a shadow copy of the previous data values.

With a non-prefetchable data source, this condition may arise at the

end of a target read burst transfer, particularly when the transaction

is terminated by the initiator. In this case, the user application is not

immediately aware of the termination condition, and will have

advanced the data source too many times.

One way to determine the number of times the target address pointer

has been over-advanced during a burst read is to monitor the differ-

ence in the number of cycles S_SRC_ENand S_DATA_VLDhave been

asserted during a transaction. During target reads, the signal

S_DATA_VLD represents the number of data phases that actually

complete with data transfer.

Design Examples
The following design examples demonstrate the use of prefetchable

and non-prefetchable data sources.

Example 1: Prefetchable Data Source
Prefetchable data sources, such as RAM and general purpose register

files, do not exhibit “side effects” from reads (that is, the state is not

altered). Figure 8-3, "Prefetchable Data Source" shows a target

address pointer with a simple RAM as they might appear in a user

application.

Figure 8-3 Prefetchable Data Source
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Assume that the target address space, as specified in the base address

register, is 4 Kb. After implementing the target transaction decode

logic that generates BAR_x_RD and BAR_x_WR, the next step is to

implement the target address pointer.

In the specific case of a 4 Kb address space, the two lowest bits of the

address counter are always logic zero and do not need to be explicitly

represented. The middle ten bits must be implemented as a loadable

counter, and the high twenty bits are optional.

assign RD_ADVANCE = BAR_x_RD & S_SRC_EN;

assign WR_ADVANCE = BAR_x_WR & S_DATA_VLD;

assign TAP_INC = RD_ADVANCE | WR_ADVANCE;

assign TAP_LD = ADDR_VLD;

always @(posedge CLK or posedge RST)

begin : target_address_pointer

if (RST) TAP = 10’h0;

else if (TAP_LD) TAP = ADIO[11:2];

else if (TAP_INC) TAP = TAP + 10’h1;

end

The remainder of the design is trivial. The target address pointer, TAP,

is routed to the address input of the RAM array. The remaining

control signals may be generated as shown below.

assign RAM_OE = BAR_x_RD & S_DATA;

assign RAM_WR = BAR_x_WR & S_DATA_VLD;

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_a

if (RST) S_READY = 1’b0;

else S_READY = 1’b1;

end

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_b

if (RST) S_TERM = 1’b1;
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else S_TERM = 1’b0;

end

The waveforms shown in Figure 8-1, "Target Burst Write Transaction",

and Figure 8-2, "Target Burst Read Transaction" are the result of this

example.

In this design, an initiator can perform burst data transfers to and

from the RAM throughout the entire address range of the target. If

the initiator attempts to continue a burst beyond the 4 Kb address

boundary, the target address pointer will wrap around and transfers

will continue from address zero. This behavior is undesirable; the

user application should signal a target abort and disable the RAM_WR
signal when a wrap around is detected.

Example 2: Non-Prefetchable Data Source
In Xilinx FPGAs, FIFOs to support PCI burst transfers are efficiently

implemented using the distributed on-chip RAM. In user applica-

tions employing FIFOs for target burst, the burst size (and aggregate

bandwidth) is limited by the depth of the FIFOs. Most FIFO designs

of 64 entries deep or less are feasible. Larger FIFOs are possible

depending on the FIFO configuration and the device speed grade.

Non-prefetchable data sources, such as FIFOs, exhibit “side effects”

from reads (that is, the state is altered or lost). Special care must be

taken during target burst reads so that state information is not lost.

The use of S_SRC_EN results in reading the data source ahead of the

actual transfer. Unless special precautions are taken, the data will be

lost.

Figure 8-4, "Non-Prefetchable Data Source" shows a FIFO suitable for

target burst reads in a user application. To present a concise example,

this example uses a single FIFO with both ports accessible through

the PCI interface. In practice, the best structure for most applications

is a dual-FIFO design with separate read and write FIFOs.
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Figure 8-4 Non-Prefetchable Data Source

As in the previous example, the user application must decode the

target access and generate appropriate read and write signals.

assign FIFO_OE = BAR_x_RD & S_DATA;

assign FIFO_WR = BAR_x_WR & S_DATA_VLD;

assign FIFO_RD = BAR_x_RD & S_SRC_EN;

The most crucial element is the FIFO itself. The FIFO must have an

additional control signal to back up, or “undo” up to two reads. A

typical FIFO implementation consists of a circular buffer imple-

mented with RAM, a read pointer, and a write pointer.

The back up feature can be incorporated in a FIFO by making the

actual depth two less than the maximum possible, and by using a

bidirectional read pointer. This prevents new data entering the FIFO

from overwriting data in the FIFO that may need to be restored.

The FIFO must also have a set of flags that provide FIFO status infor-

mation. These flags, and their uses, are listed below:

• TE -- this flag indicates a totally empty condition. If the FIFO is

totally empty at the beginning of a read transaction, the user

application should respond with a retry.

• TF -- this flag indicates a totally full condition. If the FIFO is

totally full at the beginning of a write transaction, the user appli-

cation should respond with a retry.

• AE -- this flag indicates an almost empty condition. When the

FIFO becomes almost empty during a read transaction, the user
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application should signal a disconnect. The threshold for almost

empty depends on the type of disconnect that is signalled (with

or without data).

• AF -- this flag indicates an almost full condition. When the FIFO

becomes almost full during a write transaction, the user applica-

tion should signal a disconnect. The threshold for almost full

depends on the type of disconnect that is signalled (with or

without data).

The logic for S_TERM and S_READY is then a function of the four

FIFO flags and the signal S_WRDN. Again, the exact implementation

depends on the version of the PCI interface and the desired type of

disconnect, but all of the techniques demonstrated in earlier chapters

apply.

To determine the number of times the FIFO must be backed up after a

target read, the user application must include a small state machine

to monitor the difference between anticipated transfers and actual

transfers. When a target read has completed, the state machine

should back up the FIFO if necessary.

assign ANTICIPATED = BAR_x_RD & S_SRC_EN & !TE;

assign ACTUAL = BAR_x_RD & S_DATA_VLD;

always @(posedge CLK or posedge RST)

begin : oops_counter

if (RST) OOPS = 2'b00;

else

case({ANTICIPATED, ACTUAL, BACK_UP, OOPS})

5'b00000: OOPS = 2'b00;

5'b00001: OOPS = 2'b01;

5'b00010: OOPS = 2'b10;

5'b00011: OOPS = 2'b11;

5'b00100: OOPS = 2'b00;

5'b00101: OOPS = 2'b00;

5'b00110: OOPS = 2'b01;

5'b00111: OOPS = 2'b10;

5'b01000: OOPS = 2'b00;

5'b01001: OOPS = 2'b00;
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5'b01010: OOPS = 2'b01;

5'b01011: OOPS = 2'b10;

5'b01100: OOPS = 2'b00;

5'b01101: OOPS = 2'b00;

5'b01110: OOPS = 2'b00;

5'b01111: OOPS = 2'b01;

5'b10000: OOPS = 2'b01;

5'b10001: OOPS = 2'b10;

5'b10010: OOPS = 2'b11;

5'b10011: OOPS = 2'b11;

5'b10100: OOPS = 2'b00;

5'b10101: OOPS = 2'b01;

5'b10110: OOPS = 2'b10;

5'b10111: OOPS = 2'b11;

5'b11000: OOPS = 2'b00;

5'b11001: OOPS = 2'b01;

5'b11010: OOPS = 2'b10;

5'b11011: OOPS = 2'b11;

5'b11100: OOPS = 2'b00;

5'b11101: OOPS = 2'b00;

5'b11110: OOPS = 2'b01;

5'b11111: OOPS = 2'b10;

default : OOPS = 2'b00;

endcase

end

assign BACK_UP = (| OOPS) & !S_DATA;

This state machine describes a two bit saturating up/down counter

with one increment input and two decrement inputs. As required, it

tracks the number of actual transfers versus the number of antici-

pated transfers. The BACK_UP signal is asserted when the transfer is

over (S_DATA is deasserted) and the OOPS counter is non-zero. This

backs up the FIFO and decrements the OOPS counter.
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A three data phase target burst read using a FIFO like the one shown

in Figure 8-4, "Non-Prefetchable Data Source" and an OOPScounter is

shown in the waveform of Figure 8-5, "Burst Read of Target FIFO".

This waveform includes both PCI Bus signals and internal user appli-

cation signals.

Figure 8-5 Burst Read of Target FIFO
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Chapter 9

Target 64-bit Extension

This chapter provides additional details about the target 64-bit exten-

sion. Implementation of a user application which is a 64-bit target is

almost identical to the implementation of a 32-bit version. The

notable exception is that the data path is twice as wide. The target

control signals behave the same regardless of the data path width.

Note that 64-bit transfers only apply to memory spaces. Other spaces

do not support this capability. In order for a 64-bit implementation of

the LogiCORE PCI interface to support 64-bit transfers as a target, at

least one of the base address registers must be configured for memory

space and be 64-bit enabled. This is discussed in the “Customizing

the LogiCORE PCI Interface” chapter in this guide. Memory spaces

which are 64-bit enabled support both 32-bit and 64-bit transfers.

Target Extension Signals
In addition to the target signals presented in the “Target Data

Transfer and Control” chapter in this guide, there are a few additional

signals present in 64-bit implementations of the LogiCORE PCI inter-

face.

• ADIO[63:32]  -- this bidirectional bus provides the means for

64-bit data and address transfer to and from the PCI interface.

• S_CBE[7:4]  -- this input is a registered version of the CBE_IO
lines, and is delayed by one cycle. It indicates the PCI command

and byte enables during a target transaction. This signal is used

primarily for byte enable information, as the command is

presented on the lower half of the S_CBE bus.

• S_CYCLE64-- this input indicates to the user application that the

PCI interface has claimed a 64-bit target transaction. It is asserted
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at the same time as BASE_HIT and remains asserted until the

transaction is complete.

• SLOT64 -- this signal enables the 64-bit extension signals

(AD_IO[63:32] , CBE_IO[7:4] , and PAR64_IO). This signal

must remain static at all times except at power-on and immedi-

ately after a PCI Bus reset. The method for determining the

appropriate value for this signal is design and device family

dependent. Refer to the LogiCORE PCI Implementation Guide for

more details about SLOT64.

Handling 64-bit Transfers
The concepts presented in earlier chapters apply to 64-bit transfers.

The methods for transaction decoding and data phase control are the

same.

For burst transfers, S_CYCLE64 should be used to determine the

correct “increment value” for target address pointers. Note that 64-bit

enabled memory spaces will accept the following types of transac-

tions:

• 64-bit transfers aligned on a QWORD boundary

• 32-bit transfers aligned on a DWORD boundary

The PCI Local Bus Specification forbids initiators from requesting

unaligned 64-bit transfers. The user application should respond to

such transfer attempts with target abort. The following logic will

produce this result.

assign S_ABORT = S_CYCLE64 & ADDR[2];
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Figure 9-1 Unaligned 64-bit Target Read Transaction

Using this logic, Figure 9-1, "Unaligned 64-bit Target Read Transac-

tion" shows the LogiCORE PCI interface responding to an unaligned

64-bit read attempt with a target abort.
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Figure 9-2 Aligned 64-bit Target Read Transaction

Figure 9-2, "Aligned 64-bit Target Read Transaction" demonstrates an

aligned 64-bit read attempt. Note that the behavior of the 64-bit

extension signals mirrors that of the standard 32-bit signals. In this

transfer attempt, as in Figure 9-1, "Unaligned 64-bit Target Read

Transaction", the S_CYCLE64 signal is asserted.

For adequate support of 32-bit transfers, the user application must

monitor S_CYCLE64 to behave appropriately. Typically, this will

involve changes to the target address pointer, changes to any “back

up” counters, and the addition of multiplexers on the data path.

To avoid the added complexity involved with elaborate address

pointers and back up counters, an alternate solution is to only

support burst transfers when the transaction request is 64-bit (that is,

when S_CYCLE64 is asserted). When 32-bit transfers are requested,

the user application can instruct the PCI interface to disconnect with

data after a single data phase. Note that this does not eliminate the

need for multiplexers on the data path.
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Figure 9-3 Aligned 32-bit Target Read Transaction

Figure 9-3, "Aligned 32-bit Target Read Transaction" shows a 32-bit

transfer attempt to a 64-bit enabled memory space. This may occur if

32-bit initiators reside in a 64-bit system, or if the 64-bit PCI interface

is used in a 32-bit slot. In this case, S_CYCLE64 is not asserted and

the PCI interface does not drive the 64-bit extension signals.
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Chapter 10

Target Only Designs

This chapter discusses how to correctly disable the initiator functions

present in the LogiCORE PCI interface. Previous versions of the Logi-

CORE PCI interface were available in “target/initiator” and “target-

only” versions. Current versions of the interface are available only in

the “target/initiator” configuration.

Disabling the initiator functions is trivial, but it must be done as

directed to ensure that the design can be implemented correctly.

Logic Design Considerations
Conceptually, creating a target-only design is as simple as driving all

initiator control signals to a benign (deasserted) state. Additionally,

the user application should be designed without making use of any

initiator status or state outputs from the PCI interface.

However, simply connecting all unused control signals to logic high

or logic low may have unwanted side effects. By doing so, the map

program may optimize these signals away during the implementa-

tion step. In itself, this is not a problem.

Unfortunately, the guide files, which are required to guarantee timing

in some designs, will fail to work correctly if certain of these signals

have been optimized away.

The solution to this problem is to drive the initiator control signals

from the output of flip-flops. An example of this is presented below:

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized

if (RST) FAKE_LOGIC_0 = 1’b1;

else FAKE_LOGIC_0 = 1’b0;

end
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Table 10-1, "Initiator Control Signals", lists the initiator control signals

that must be tied off and the appropriate “benign” values. The table

also identifies which signals must be driven from a flip-flop as speci-

fied above. Some signals are present only in 64-bit implementations

of the interface.

System Level Considerations
One additional system level issue should be considered during the

design phase. A target only design has no need to drive REQ_O or to

monitor GNT_I on the PCI Bus.

The REQ_Oand GNT_I pins may be connected to the PCI Bus (as they

would be for initiator designs) or left unconnected at the discretion of

the designer. If GNT_I is not connected to the PCI Bus, it must be

passively pulled up by an external resistor.

Table 10-1  Initiator Control Signals

Signal Name Benign Value Flip-Flop

REQUEST 0 No

REQUESTHOLD 0 No

COMPLETE 1 Yes

M_WRDN 0 Yes

M_READY 1 Yes

M_CBE[3:0] 0110 Optional

CFG_SELF 0 No

REQUEST64 0 No

M_CBE[7:4] 0000 Optional
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Chapter 11

Initiator Design Tips

This chapter describes some of the design issues involved in building

the initiator portion of an application. A good way to begin building

the initiator portion of a user application is to write a “mission” state-

ment for what it must accomplish.

Determine the Required Transfers
Consider what data must be moved around by the initiator:

• How big is each transfer and what is its alignment? These affect

the transfer counter size and the address counter size.

• How fast can the intended target accept or send data?

• How fast can the user application provide or receive data?

Determine Termination Behavior
Invariably, a target will signal some form of termination condition.

How will the user application respond? What should it do?

• An initiator is obliged to retry an operation over again if the

target signals a target retry condition. Restart the operation from

the beginning.

• An initiator should not retry an operation if it detects a target

abort or a master abort condition. This indicates that the opera-

tion is either illegal for the selected target or that no target exists.

• Handling a disconnect condition is at the discretion of the user

application. Initiators are not required to retry an operation

terminated with a disconnect. An initiator can also be terminated

if the internal latency timer expires while GNT_I is deasserted.
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Determine Transaction Ordering Rules
When the user application requests the bus for an initiator operation,

it may not be granted the bus for quite some time. In the meantime,

another agent may initiate a target access to the user application.

How should the user application respond?

Does the user application accept the target access? It may contain

important information relevant to the pending initiator transaction.

Denying the other agent access by forcing a target retry will be disas-

trous in a system with priority-based arbitration. The initiating agent

may keep retrying the transaction because it has higher priority, and

the user application will never access the bus. This results in dead-

lock. However, in a round-robin system, forcing a target retry is a

good way for the user application to perform its pending transaction

first. It can then respond to the target access when it is later retried by

the other agent.

Assemble the Design
The fundamentals of an initiator design, including a simple state

machine, are covered in the “Initiator Data Transfer and Control”

chapter of this guide. The material covered in that chapter is suffi-

cient for implementing non-burst transfers to other PCI agents.

For more elaborate designs, the “Initiator Data Phase Control”

chapter of this guide presents information on inserting initiator wait

states and controlling the length of initiator transfers. This informa-

tion is useful for both non-burst and burst designs.

For burst designs, the “Initiator Burst Transfers” chapter of this guide

demonstrates how to support initiator burst transfers through modi-

fications to the simple state machine and the inclusion of additional

logic. The “Initiator 64-bit Extension” chapter of this guide discusses

the use of the 64-bit extension for increased performance.
11-2 Xilinx Intellectual Property Solutions



Chapter 12

Initiator Data Transfer and Control

Transferring data as an initiator is a multi-step process. Some of the

timing depends on other PCI agents, such as the arbiter and the

selected target. The basics of controlling initiator transactions are

presented in this chapter. Techniques for more elaborate transactions

are covered in later chapters.

Typical Initiator Data Interface
In applications not using initiator burst transactions, data is usually

transferred to and from registers in the user application. These regis-

ters are connected to control signals required for initiator data

transfer and to any additional control and data path logic provided

by the user. These registers may also connect to internal FIFOs or to

I/O pins on the user application.

A typical initiator data register is interfaced as shown in Figure 12-1,

"Example Initiator Register".

Figure 12-1 Example Initiator Register

The purpose of this chapter is to demonstrate the logic required in the

user application to complete simple initiator transfers and thereby

generate the load and output enable signals for the data register.
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Initiator Interface Signals
The following signals control initiator data transfer to and from the

PCI interface. For basic transfers, only a subset of these signals need

be used. More elaborate designs involving initiator wait state inser-

tion or initiator burst are covered in later chapters. Note that refer-

ences to inputs and outputs are made with respect to the user

application.

• ADIO[31:0]  -- this bidirectional bus provides the means for

data and address transfer to and from the PCI interface.

• M_DATA_VLD -- this input has two interpretations depending on

the direction of data transfer. When the user application is

sinking data (initiator reads), M_DATA_VLD indicates that the

user application should capture valid data from the ADIO bus.

When the user application is sourcing data (initiator writes),

M_DATA_VLD indicates that a data phase has completed on the

PCI Bus.

• M_SRC_EN-- this input is only used during initiator burst writes.

It indicates to the user application that the data source which

drives output data onto the ADIO bus must provide the next

piece of data. In most applications, this signals the user applica-

tion to advance the data pointer for the source that is providing

data.

• TIME_OUT -- this input indicates to the user application that the

latency timer has expired. This means that the user application

has exceeded the maximum number of clock cycles allowed by

the system configuration software. It is only of importance to

designs that perform initiator bursts.

• CSR[39:0]  -- this input provides status information about the

current transfer. This is used primarily in initiator burst applica-

tions with non-prefetchable sources to determine if any associ-

ated address pointers must be “backed up”.

• REQUEST -- this output from the user application instructs the

PCI interface to request the PCI Bus and to begin an initiator

transaction once GNT_I is asserted.

• REQUESTHOLD -- this output from the user application indicates

that it desires to continue requesting the PCI Bus for an extended

period of time.
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• M_WRDN -- this output indicates the direction of data transfer for

the current initiator transaction. Logic high indicates that the user

application is sourcing data (i.e. initiator write). The user applica-

tion should not change this output during a transaction.

• M_CBE[3:0] -- this output indicates the PCI command and byte

enables during an initiator transaction. The command should be

presented during the assertion of M_ADDR_Nby the PCI interface,

and the byte enables should be presented during each data

phase.

• M_READY-- this output from the user application indicates that it

is ready to transfer data, and can be used to insert wait states

during the first data phase of a transaction.

• COMPLETE -- this output from the user application informs the

initiator state machine that it should complete the current trans-

action.

The following signals are output by the initiator state machine in the

PCI interface. These states are defined in Appendix B of the PCI Local
Bus Specification.

• I_IDLE -- this input indicates that the initiator state machine is in

the idle state and that it is not actively driving the PCI Bus.

• DR_BUS -- this input indicates that the initiator state machine is

driving the PCI Bus because the arbiter has parked the bus on the

PCI interface (GNT_I asserted with no pending or active request

for bus grant from the user application).

• M_ADDR_N -- this input indicates that the initiator state machine

expects the user application to drive ADIO with the PCI Bus

address for a requested transaction. This is not a confirmation

that a bus transaction will begin.

• M_DATA-- this input indicates that the initiator state machine is in

the data transfer state.

Note: The PCI interface uses a single cycle of address stepping

during address phases on the PCI bus, which is fully compliant with

the PCI Local Bus Specification. However, it is possible for the PCI

interface to lose bus grant during this clock cycle, forcing the PCI

interface to relinquish the bus. Under this condition, the PCI interface

will have asserted M_ADDR_N, but will not transition to M_DATA. The

PCI interface will automatically re-request the bus without user inter-
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vention. In some extreme cases, this sequence of events can occur

more than once, which will appear as a train of M_ADDR_Nassertions,

followed by a final M_DATA assertion. For this reason, the user appli-

cation design should not assume that M_ADDR_Nis asserted once per

transaction, nor should the user application assume that an assertion

of M_ADDR_N indicates a subsequent assertion of M_DATA in the next

clock cycle.

Initiator Control
Performing a complete initiator transaction consists of several steps.

The proper sequencing of the PCI interface control signals is best

performed by a state machine in the user application. In addition to a

state machine and a data register, additional logic is required to drive

outputs to the PCI interface and to generate inputs used by the state

machine. This is represented in the block diagram of Figure 12-2,

"Initiator Control Block Diagram".
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Figure 12-2 Initiator Control Block Diagram
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add support for burst transfers is discussed in later chapters. The

entire design breaks down into several distinct sections:

• Inputs to the state machine

• The state machine itself

• Outputs to the PCI interface

• Data register control signals

Inputs to the State Machine
The sample state machine requires one input to tell it to start, another

input to indicate the direction of the desired transfer, and five addi-

tional inputs to effectively monitor the progression of the transaction.

These signals are discussed below:

The STARTsignal indicates to the state machine that it should begin a

transaction. This signal is generated by the user application. The

source of this signal will vary depending on the specific user applica-

tion function.

The DIR  signal indicates the direction of the desired transfer, and is

generated by the user application. The source of this signal will vary

depending on the specific user application function. The DIR  signal

should not change from the time START is asserted until the end of

the initiator transfer. In this particular example, initiator writes are

selected by driving DIR  to logic high.

The signals M_ADDR_N and M_DATA are outputs of the PCI user inter-

face that are used by the state machine. The signal M_DATA_FELL
indicates that a falling edge has been detected on M_DATA. This is

generated by the following code.

always @(posedge CLK or posedge RST)

begin : edge_detect

if (RST) M_DATAQ = 1’b0;

else M_DATAQ = M_DATA;

end

assign M_DATA_FELL = !M_DATA & M_DATAQ;

The signals FATALand RETRYare derived from PCI interface signals.

These signals indicate how a transaction attempt has terminated. The
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FATAL signal indicates that a master abort or target abort has

occurred. The RETRY signal indicates that the target issued a discon-

nect without data. As the initiator state machine only performs single

transfers, this implies a retry by the target.

This information is obtained from the extended status signals,

CSR[39:32] . The extended status information is valid one clock

cycle after a particular event has occurred on the PCI Bus. Unless the

status is used during that cycle, it must be registered to preserve it for

later use. The following code performs the task of preserving the

status information from the final data phase.

always @(posedge CLK or posedge RST)

begin : watch_status

if (RST)

begin

FATAL = 1’b0;

RETRY = 1’b0;

end

else if (!M_ADDR_N) // clear at beginning

begin

FATAL = 1’b0;

RETRY = 1’b0;

end

else if (M_DATA) // latch until end

begin

FATAL = CSR[39] | CSR[38];

RETRY = CSR[36];

end

end

The State Machine
The sample state machine is shown in Figure 12-3, "Sample User

Application State Machine". As stated previously, this state machine

is suitable for performing single data phase initiator transfers.
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Figure 12-3 Sample User Application State Machine

Each state performs a specific step in the sequence. The individual

states and their purposes are listed below.

IDLE_S is the idle state. During this state, no initiator activity takes

place, and the state machine waits for the user application to assert

START. Once STARThas been asserted, the state machine proceeds to

the REQ_S state.

REQ_S is the request state. During this state, a request is made to

begin an initiator transaction. The state machine then branches based
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on the value of the DIR  signal. If DIR  indicates an initiator read, the

next state is READ_S. Otherwise, the next state is WRITE_S.

READ_S and WRITE_S are data transfer states. The state machine

stays in READ_S or WRITE_S until it detects that the transaction is

over. The transaction is over when M_DATA_FELL is asserted.

These states are identical except that the state machine outputs differ.

The output logic is discussed in the next section. Since DIR  is avail-

able in the user application, these two states may be reduced into a

single XFER_S state if DIR  is used in the data register control equa-

tions. The states are separate in this example for clarity. In more elab-

orate designs, it is often desirable to completely split the state

machine into separate read and write state machines. For very simple

designs, it is possible to further reduce the example state machine

presented here.

Whether in READ_S or WRITE_S, the state machine makes a three

way branch after the transfer state, based on the FATAL, and RETRY
signals. If a fatal error has occurred, the state machine moves to the

DEAD_S state. If no fatal error occurred and no data transfer

occurred, the state machine moves to the RETRY_S state. Otherwise,

the state machine moves to the DONE_S state.

DEAD_S is the terminal state for handling fatal errors. In practice, the

user application should provide some method for resetting the state

machine to handle such errors.

RETRY_S is the retry state. In this simple example, no actions are

performed in the RETRY_S state, and the state machine immediately

transitions to the REQ_S state and attempts the transaction again.

More elaborate designs may implement a retry counter to discard

transactions after a certain number of retries, as permitted in the PCI
Local Bus Specification.

DONE_S is the done state. As in the RETRY_S state, no specific

actions are performed in this state, and the state machine immedi-

ately transitions back to the IDLE_S state.

The state machine shown in Figure 12-3, "Sample User Application

State Machine" could be implemented as shown:

always @(posedge CLK or posedge RST)

begin : initiator_fsm

if (RST) STATE = IDLE_S;
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else case (STATE)

IDLE_S : begin

if (START) STATE = REQ_S;

else STATE = IDLE_S;

end

REQ_S : begin

if (DIR) STATE = WRITE_S;

else STATE = READ_S;

end

WRITE_S : begin

if (M_DATA_FELL)

begin

if (FATAL) STATE = DEAD_S;

else if (RETRY) STATE = RETRY_S;

else STATE = DONE_S;

end

else STATE = WRITE_S;

end

READ_S : begin

if (M_DATA_FELL)

begin

if (FATAL) STATE = DEAD_S;

else if (RETRY) STATE = RETRY_S;

else STATE = DONE_S;

end

else STATE = READ_S;

end

RETRY_S : STATE = REQ_S;

DONE_S : STATE = IDLE_S;

DEAD_S : STATE = DEAD_S;

default : STATE = IDLE_S;

endcase

end
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Outputs to the PCI Interface
The state machine in the user application is responsible for driving

several signals which are output to the PCI interface. These signals

are discussed below along with the logic required to generate them.

This discussion assumes the existence of a 32-bit ADDRESS signal

provided by other logic in the user application. This ADDRESS repre-

sents the PCI Bus address of the desired target. The source of this

signal will vary depending on the specific user application function.

Before requesting a transaction, the user application should indicate

that it is ready to transfer data. Although it is possible to initiate a

transaction and then insert wait states using the M_READYsignal, bus

bandwidth is conserved by requesting a transaction only after the

user application is ready to transfer data. In this example, the user

application is always ready.

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_a

if (RST) M_READY = 1’b0;

else M_READY = 1’b1;

end

The M_READY signal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop,

although it is permitted to drive it from combinational logic.

Note: Never tie this signal to logic one or to logic zero.

The state machine initially requests access to the PCI Bus by asserting

REQUEST. This is done in the REQ_S state and results in the assertion

of REQ_O. The REQUEST signal must only be asserted for a single

cycle to initialize a request. Note that the bus master enable bit in the

command register must be set before the PCI interface is able to

request the bus. This is the responsibility of the host bridge and

system configuration software.

assign REQUEST = (STATE == REQ_S);

The REQUESTHOLD signal is not used in this example, and is simply

assigned to logic zero.

assign REQUESTHOLD = 1’b0;
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When the PCI interface has received a bus grant, the user application

must drive the target address on the ADIO bus. This address is

presented on the PCI Bus during the address phase.

assign ADDR_OE = M_ADDR_N;

assign ADIO = ADDR_OE ? 32’bz : ADDRESS;

Simultaneously, the user application must also drive M_CBE to indi-

cate the desired PCI Bus command. At other times, the M_CBE signal

is used to indicate byte enables. In this example, the initiator

performs memory read and memory write transactions (commands

0x6 and 0x7, respectively), depending on the value of the DIR  signal.

All bytes are enabled. The bus command and byte enables are easily

modified to accommodate the requirements of the user application.

assign COMMAND = {3’b011, DIR};

assign BYTE_ENABLE = 4’b0000;

assign M_CBE = M_ADDR_N ? BYTE_ENABLE : COMMAND;

Throughout the entire transaction, the user application must drive

M_WRDN to indicate the desired transfer direction. This signal must

remain constant during a transaction. By assigning it to track the DIR
signal, which was stipulated to be constant during a transaction, this

requirement is met.

assign M_WRDN = DIR;

The M_WRDN signal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop,

although it is permitted to drive it from combinational logic.

Note: Never tie this signal to logic one or to logic zero.

The final signal, COMPLETE, indicates to the PCI interface that it

should finish the current transaction. In the case of single transfers,

COMPLETE must be asserted no later than one cycle after REQUEST,
and deasserted when the transfer is complete.

always @(posedge CLK or posedge RST)

begin : driving_complete

if (RST) COMPLETE = 1’b0;

else case (STATE)

REQ_S : COMPLETE = 1'b1;

READ_S : COMPLETE = 1’b1;
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WRITE_S : COMPLETE = 1’b1;

default : COMPLETE = 1'b0;

endcase

end

The COMPLETEsignal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop, if

possible. In practice, it is usually driven by combinational logic.

Note: Never tie this signal to logic one or to logic zero.

Data Register Control Signals
As a final consideration, the logic for the load and output enables of

the typical initiator data register shown in Figure 12-1, "Example

Initiator Register" are as follows:

assign LOAD = (STATE == READ_S) & M_DATA_VLD;

assign OE = (STATE == WRITE_S) & M_DATA;

As is the case in target read transactions, the user application should

always drive the entire width of the ADIO bus during initiator writes,

even if some byte enable signals are not asserted. For initiator reads,

the LOADsignal may be further qualified by the byte enable signals to

generate separate load signals for each byte.

Sample Transactions
The following figures illustrate typical PCI Bus read and write trans-

actions that result from implementing the logic presented in this

chapter, as well as several exceptional cases that can arise.
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Figure 12-4 Initiator Read Transaction

Figure 12-4, "Initiator Read Transaction" demonstrates the initiator

issuing a read command to a target. The transaction is terminated in a

normal fashion by the initiator. This figure also shows the timing rela-

tionship between selected user application signals and PCI Bus

signals during an initiator read transaction.
12-14 Xilinx Intellectual Property Solutions



Initiator Data Transfer and Control
Figure 12-5 Initiator Write Retried by Target

Figure 12-5, "Initiator Write Retried by Target" shows the initiator

issuing a write command to a target. The target terminates the trans-

action with retry. When this occurs, no data is transferred, and the

initiator will try again.
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Figure 12-6 Initiator Write Retried and Completed

Figure 12-6, "Initiator Write Retried and Completed", shows the initi-

ator re-issuing the original command. This time the target does not

retry the transaction. This figure also shows the timing relationship

between selected user application signals and PCI Bus signals during

an initiator write transaction.
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Figure 12-7 Target Abort

Figure 12-7, "Target Abort" demonstrates the behavior of the PCI

interface when a target signals an abort (target abort). This event

often occurs due to incorrect programming or serious system errors.

It can also signify that the initiator has incorrectly attempted to burst

data beyond the address space of the target. The user application

must respond appropriately.
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Figure 12-8 Master Abort

Figure 12-8, "Master Abort" demonstrates the behavior of the PCI

interface when no target responds (master abort). This event is

expected during some configuration transactions and special cycle

broadcast cycles. However, during normal operation, this would

occur due to incorrect programming or serious system errors. It is

critical that the user application respond appropriately.
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Initiator Data Phase Control

This chapter discusses the mechanism by which the user application

can control aspects of initiator transactions to accommodate its own

ability to source or sink data.

The user application may insert wait states before the first data

transfer to allow itself additional time if it is not ready. Additionally,

the user application may control the number of data phases by indi-

cating when to complete the transaction.

The generation of initial latency with wait states, while possible, is

not recommended. This technique wastes valuable bus bandwidth.

From a bandwidth perspective, it is far better for the user application

to delay making a bus request until it is ready to perform a transac-

tion.

Control Modes
Data phase control is achieved using the M_READY and COMPLETE
signals. Combinations of the two control signals yield the following

four modes:

• Wait Burst -- the wait burst mode inserts wait states at the begin-

ning of a PCI Bus transaction (holds off the first data phase) by

delaying the assertion of IRDY_IO  by the PCI interface. This

particular wait mode is for use with initiator burst transactions.

Use of this mode indicates to the PCI interface that the user appli-

cation is not ready and will attempt more than one data phase.

• Wait Single -- the wait single mode inserts wait states at the

beginning of a PCI Bus transaction in the same manner as the

wait burst mode. However, this mode is for use with single initi-

ator transactions. Use of this mode indicates to the PCI interface
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that the user application is not ready and will not attempt more

than one data phase.

• Proceed -- the proceed mode allows PCI Bus data phase(s) to

proceed without interruption. While the selected target may

insert wait states or terminate the transaction prematurely, the

user application must be prepared to transfer data at full speed.

This is for use with multiple data phase transfers only.

• Finish -- the finish mode causes the PCI interface to complete the

transaction as soon as possible. This is for use with both single

and multiple data phase transfers.

Again, the exact disconnect sequence is affected by whether or not

the selected target terminates the transaction. The PCI interface will

automatically generate the correct behavior.

Table 13-1, "Data Phase Control Signals for Initiators", shows the four

modes of operation and the corresponding M_READY and COMPLETE
values.

Changing from one mode to another must not be done in arbitrary

sequence. In addition, the timing of mode transitions is critical to

ensure precise control over the number of data phases that occur in a

transaction. This is of particular importance when switching to the

finish mode.

Table 13-1  Data Phase Control Signals for Initiators

Condition Bus Signals
From User Application

M_READY COMPLETE

Wait Burst IRDY_IO = 1
FRAME_IO = 0

Low Low

Wait Single IRDY_IO = 1
FRAME_IO = 1

Low High

Proceed IRDY_IO = 0
FRAME_IO = 0

High Low

Finish IRDY_IO = 0
FRAME_IO = 1

High High
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The permitted data phase control sequences for initiator designs

using the PCI interface are shown in Figure 13-1, "Permitted Data

Phase Control Sequences". The exact timing details are covered in

subsequent sections of this chapter.

Figure 13-1 Permitted Data Phase Control Sequences

The control sequences shown in Figure 13-1, "Permitted Data Phase

Control Sequences" assume that the user application is terminating

the transaction. In practice, a transaction may end for reasons that the

user application cannot control, such as a target termination or a

timeout. When the initiator state machine becomes inactive after such

a condition, the sequencing rules no longer apply.

Note that the wait modes cannot be used to insert wait states during

arbitrary data phases in a transaction. They may only be used to

delay the completion of the first data phase of an initiator transaction.

This is called master data latency in the PCI Local Bus Specification.

Figure 13-1, "Permitted Data Phase Control Sequences" shows that

there are four possible sequences for controlling the number of data

phases in a transaction. These are:

• Single transfers with no master data latency

• Single transfers with master data latency

• Burst transfers with no master data latency

• Burst transfers with master data latency

All initiators are required to complete the first data phase of a trans-

action within 8 clocks from the assertion of FRAME_IO. The PCI Local
Bus Specification strongly discourages the use of master data latency

and states that there is generally no reason for using it. The user

application is responsible for observing this requirement.

WB = Wait Burst WS = Wait Single P = Proceed

Transfer
Start WB P F Transfer

End
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Note: During initiator state machine activity, do not violate the mode

sequencing shown above. When the initiator state machine is inac-

tive, this requirement does not apply.

Control Pipeline
In order to meet the stringent PCI Bus performance requirements, the

PCI interface pipelines all of the bus control signals and the data

path. Consequently, the M_READY and COMPLETE signals must be

presented in advance of the desired effect.

The signals M_READY and COMPLETE connect to the initiator state

machine through multiple levels of logic. For this reason, it is highly

recommended that the logic driving these signals be kept as simple as

possible. Although it is advantageous to drive these signals from flip-

flops in the user application, this is typically not possible in all but the

most simple (non-burst) designs.

The user application must present the correct initial data phase

control mode no later than one cycle after asserting REQUEST. After

this, the user application may change modes as long as it does not

violate the sequencing shown in Figure 13-1, "Permitted Data Phase

Control Sequences".

In all cases, once the user application decides to finish an initiator

transaction, it must select the finish mode by setting M_READY and

COMPLETE appropriately. Once the user application signals that it

wishes to finish a transaction, it must hold M_READY and COMPLETE
until the end of the transaction. The deassertion of M_DATA by the

PCI interface indicates that the transfer is over.

Transaction Termination Rules
If the user application is sending or receiving a single data word, the

user application must signal the wait single or finish mode no later

than one cycle after asserting REQUEST. If the user application inserts

wait states using the wait single mode, it must switch to the finish

mode before it causes the PCI interface to violate the master data

latency specification. Again, once the user application signals to

finish the transaction, it must hold M_READYand COMPLETEthrough

the end of the M_DATA state.

If the user application is sending or receiving two data words, the

user application may start in either the wait burst or proceed modes.
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If starting in the wait burst mode, the user application must switch to

the proceed mode before it causes the PCI interface to violate the

master data latency specification. Once in the proceed mode, the user

application must switch to the finish mode when both of the

following conditions have been met:

• The “proceed” mode has been signalled for at least one cycle.

• The signal M_DATA has been asserted for at least one cycle.

For burst transfers of three or more data words, the initial mode

selection is the same as in the two transfer case. The user application

should switch to the finish mode when three transfers remain and

M_DATA_VLD is asserted.

Implementation
The above rule set appears quite complicated when presented textu-

ally. The following example demonstrates the logic required to drive

M_READY and COMPLETE in a general case. This example builds on

the example presented in an earlier chapter, enabling it to perform

simple burst transfers. This code would replace the previous logic

that generated M_READY and COMPLETE.

Most initiator designs will use a transfer counter to track the desired

burst length. The following logic implements a transfer counter and

generates three outputs which indicate how many transfers remain.

The BURST_LENGTH and START signals are generated elsewhere in

the user application. Note that for reads and writes, M_DATA_VLD is
used to indicate a successful data transfer on the PCI Bus.

always @(posedge CLK or posedge RST)

begin : transfer_counter

if (RST) XFER_CNT = 4’h0;

else if (START) XFER_CNT = BURST_LENGTH;

else if (M_DATA_VLD) XFER_CNT = XFER_CNT - 4’h1;

end

assign CNT3 = (XFER_CNT == 4’h3);

assign CNT2 = (XFER_CNT == 4’h2);

assign CNT1 = (XFER_CNT == 4’h1);
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The following logic generates an initiator “ready” signal that is used

later in the M_READY and COMPLETE logic. In user application

designs that do not insert wait states as an initiator, this logic can be

optimized away. The logic samples a signal called READY_FLAG,
which is produced elsewhere in the user application. This signal indi-

cates that the user application is ready to transfer data.

always @(posedge CLK or posedge RST)

begin : not_recommended

if (RST)

begin

INIT_READY = 1’b1;

INIT_WAITED = 1’b0;

end

else

begin

INIT_WAITED = !INIT_READY;

if (START) INIT_READY = READY_FLAG;

else if (!INIT_READY) INIT_READY = READY_FLAG;

end

end

The final step is to generate M_READYand COMPLETE. Typically, initi-

ator wait states are not used and the INIT_WAITED  signal should be

optimized out of the equations. It is critical to reduce the logic as

much as possible for timing reasons.

assign FIN1 = CNT1 & REQUEST;

assign FIN2 = CNT2 & M_DATAQ & !INIT_WAITED;

assign FIN3 = CNT3 & M_DATA_VLD;

assign ASSERT_COMPLETE = FIN1 | FIN2 | FIN3;

assign COMPLETE = ASSERT_COMPLETE | HOLD_COMPLETE;

assign M_READY = INIT_READY;

always @(posedge CLK or posedge RST)

begin : finish_up

if (RST) HOLD_COMPLETE = 1’b0;
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else if (M_DATA_FELL) HOLD_COMPLETE = 1’b0;

else if (ASSERT_COMPLETE) HOLD_COMPLETE = 1’b1;

end

Note: Do not forget that M_READY and COMPLETE must not be

assigned static values.

Sample Transactions
The following figures illustrate typical initiator read and write burst

transactions that result from implementing the logic presented in this

chapter. Sample transactions for cases of single transfers were

presented in earlier chapters.

Figure 13-2 Two DWORD Initiator Read Transfer

Figure 13-2, "Two DWORD Initiator Read Transfer", demonstrates the

PCI interface performing a burst transfer. This figure also shows the

timing relationship between selected user application signals and PCI

Bus signals during the transaction.
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Figure 13-3 Two DWORD Initiator Write Transfer

Figure 13-3, "Two DWORD Initiator Write Transfer", demonstrates

the PCI interface performing a burst transfer. This figure also shows

the timing relationship between selected user application signals and

PCI Bus signals during the transaction.
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Figure 13-4 Three DWORD Initiator Read Transfer

Figure 13-4, "Three DWORD Initiator Read Transfer", demonstrates

the PCI interface performing a burst transfer.
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Figure 13-5 Three DWORD Initiator Write Transfer

Figure 13-5, "Three DWORD Initiator Write Transfer", demonstrates

the PCI interface performing a burst transfer. This figure also shows

the timing relationship between selected user application signals and

PCI Bus signals during the transaction.
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Initiator Burst Transfers

As is the case in target transactions, single transfers as an initiator

waste valuable bus bandwidth. The performance advantage in PCI is

derived from burst transactions, where two or more data words are

transferred during the transaction.

Building a user application that supports single initiator transfers is

moderately complex. Building a user application that supports initi-

ator burst transfers is even more complex, but worth the effort, if

maximum bandwidth is the goal.

Keeping Track of the Address Pointer
In a PCI transaction, only the starting address is broadcast over the

bus. For single transfers as an initiator, a register that holds the target

address is sufficient.

For burst transfers, however, the user application must keep track of

the current address because the target can terminate the transaction

at any time. If the initiator is to continue the transfer during another

transaction, it must resume at the appropriate address.

The initiator must always provide and track a full 32 bit address (the

lowest two bits are always zero). In some applications, however, a

smaller address counter and a larger data register are sufficient to

track the current address. The actual size of the counter depends on

the alignment and length of the transfers required by the user appli-

cation. In the worst case, the initiator may require a full 30-bit, load-

able binary counter. See Table 14-1, "Example Initiator Address

Pointer".
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Two methods may be used for incrementing the initiator address

pointer. The first method is to use M_DATA_VLDas a increment enable

signal. The M_DATA_VLD signal indicates successful data transfer for

both initiator reads and initiator writes.

This method is simple and ensures that the initiator address pointer is

always valid. It is most useful in user application designs that do not

require explicit addresses during a transfer, e.g. bursting data to or

from FIFOs. An example of this is presented later in this chapter.

Another method is to use M_DATA_VLD as an increment enable

during initiator reads, and use M_SRC_EN during initiator writes.

This method allows the initiator address pointer to serve as a local

pointer used to index storage elements in the user application.

This is particularly useful in designs with addressable RAM or in

other cases where explicit addresses are required. However, this

method requires that the initiator address pointer be “backed up” in

cases where the target terminates the transaction prematurely or the

transfer spans multiple bus transactions. The relationship between

M_DATA_VLDand M_SRC_ENis identical to that of S_DATA_VLDand

S_SRC_EN.

Sinking Data in Burst Transfers
During initiator reads, the PCI interface transfers burst data using a

pipelined data path. The data valid signal, M_DATA_VLD, is used to

advance the initiator address pointer (and any other data pointers in

the user application logic). At the same time the initiator address

pointer is advanced, the user application also captures valid data

from the internal ADIO bus.

Using M_DATA_VLDto capture burst data is very similar to the simple

case of single transfers. The user application may enable different

data sinks, if necessary, based upon the current initiator address

Table 14-1 Example Initiator Address Pointer

31 2 1 0

30-bit loadable binary counter 0 0
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pointer. The generation of a local address pointer was discussed in

the previous section.

An initiator burst read is shown in the waveform of Figure 14-1,

"Initiator Burst Read Transaction". This waveform includes both PCI

Bus signals and internal user application signals. In this figure, the

initiator address pointer is implemented to provide a local pointer to

index storage elements. During initiator reads, this pointer is incre-

mented when M_DATA_VLD is asserted.

Figure 14-1 Initiator Burst Read Transaction

Sourcing Data in Burst Transfers
During initiator writes, the PCI interface transfers burst data using a

pipelined data path. The data source enable signal, M_SRC_EN, is
used to advance data pointers in the user application logic (and

possibly the initiator address pointer). The result is that the user

application drives new data onto the internal ADIO bus.

Internally, the PCI interface captures the data value provided by the

user application on the ADIO bus and holds this value in the output
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flip-flops driving the AD_IO pins on the PCI Bus. The user applica-

tion then presents the next data word on ADIO, instead of holding the

previous data word until the current data phase completes.

An initiator burst write is shown in the waveform of Figure 14-2,

"Initiator Burst Write Transaction". This waveform includes both PCI

Bus signals and internal user application signals. In this figure, the

initiator address pointer is implemented to provide a local pointer to

index storage elements. During initiator writes, this pointer is incre-

mented when M_SRC_EN is asserted.

Figure 14-2 Initiator Burst Write Transaction

Using M_SRC_ENto present data for the next data phase may require

additional control logic depending on the type of data source present

in the user application. Keep in mind that the M_SRC_EN signal

advances data pointers (and possibly the initiator address pointer) in

anticipation of the next data phase, which may or may not complete

with successful data transfer.

If a pointer is advanced, and the data is never transferred, then the

user application must decide what to do with the non-transferred
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data. In the case of prefetchable data sources, such as RAM or a

register file, the data can be discarded. The original data remains in

the RAM or the register file for future use.

This also applies in cases where a FIFO is used as a rate matching

buffer and the contents of the FIFO are flushed after a transaction.

Any non-transferred data is discarded from the FIFO, but the original

data still remains in the source that originally provided it.

For non-prefetchable data sources, as is the case when a FIFO itself is

the data source, pulling data out of the FIFO may be destructive. The

unused data must be restored in the data source so it is available for

future use should it not be transferred. This may require decre-

menting internal counters or keeping a shadow copy of the previous

data values.

Conditions requiring “back up” may arise at the end of an initiator

write transfer where the target signals some form of disconnect,

terminating the transaction before the initiator is able to complete the

full transfer. In these cases, the user application is not immediately

aware of the termination condition, and will have advanced the data

source too many times. This condition can also arise during data

transfers that span multiple bus transactions.

One way to determine the number of times the data pointer (and

possibly the initiator address pointer) has been over-advanced

during a burst write is to monitor the difference in the number of

cycles M_SRC_EN and M_DATA_VLD have been asserted during a

transaction. During initiator writes, the signal M_DATA_VLD repre-

sents the number of data phases that actually complete with data

transfer.

Design Example
The following design example demonstrates burst transfers as an

initiator using a non-prefetchable data source. In this particular

example, explicit local addresses are not required, so the simple initi-

ator address pointer scheme is used.

Non-prefetchable data sources, such as FIFOs, exhibit “side effects”

from reads (that is, the state is altered or lost). Special care must be

taken during initiator burst writes so that state information is not lost.

The use of M_SRC_EN results in reading the data source ahead of the

actual transfer. Unless precautions are taken, the data will be lost.
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Figure 14-3, "Non-Prefetchable Data Source" shows a FIFO suitable

for initiator burst transactions in a user application. To present a

concise example, this example uses a single FIFO with both ports

accessible through the PCI interface. In practice, the best structure for

most applications is a dual-FIFO design with separate read and write

FIFOs.

Figure 14-3 Non-Prefetchable Data Source

The most crucial element is the FIFO itself. The FIFO must have an

additional control signal to back up, or “undo” up to two reads. A

typical FIFO implemented in an FPGA consists of a circular buffer

implemented with RAM, a read pointer, and a write pointer.

The back up feature can be incorporated in a FIFO by making the

actual depth two less than the maximum possible, and by using a

bidirectional read pointer. This prevents new data entering the FIFO

from overwriting data in the FIFO that may need to be restored.

The FIFO must also have a set of flags that provide FIFO status infor-

mation. These flags, and their uses, are listed below:

• TE -- this flag indicates a totally empty condition. If the FIFO is

totally empty and an initiator write transaction is requested, the

user application should either ignore the request, postpone it, or

flag some sort of error.

• TF -- this flag indicates a totally full condition. If the FIFO is

totally full and an initiator read transaction is requested, the user

application should either ignore the request, postpone it, or flag

some sort of error.
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• AE -- this flag indicates an almost empty condition. When the

FIFO becomes almost empty during an initiator write, the user

application should signal that it wishes to complete the transac-

tion because it is about to underrun the FIFO.

• AF -- this flag indicates an almost full condition. When the FIFO

becomes almost full during an initiator read, the user application

should signal that it wishes to complete the transaction because it

is about to overrun the FIFO.

In most designs, the user application contains a transfer counter

which specifies the length of the desired transfer. For designs with

transfer lengths less than or equal to the FIFO size, it is not necessary

to monitor the AE and AF flags from the FIFO. In this case, the

transfer counter may be monitored to determine when the initiator

should cease data transfer. That is, there is only one “terminating”

condition which occurs when the transfer is complete.

For transfer lengths greater than the FIFO size, the AE and AF flags

become important. In this case, the user application must be aware of

two “terminating” conditions. One occurs when the transfer is

complete, as determined by the transfer counter, and the other occurs

when the FIFO becomes almost full (initiator read) or almost empty

(initiator write).

In the second case, the FIFO must be emptied (initiator read) or

refilled (initiator write) by logic in the user application before it

requests another transaction to continue the transfer.

The FIFO design, as described above, may be coupled with a modi-

fied initiator control state machine, as discussed in the “Initiator Data

Transfer and Control” chapter of this guide. Although the bulk of this

example is similar, it is presented here in its entirety to present a

complete picture. As before, the entire design breaks down into

several distinct sections:

• Inputs to the state machine

• The state machine itself

• Outputs to the PCI interface

• Control signals
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Inputs to the State Machine
The sample state machine requires one input to tell it to start, another

input to indicate the direction of the desired transfer, and six addi-

tional inputs to effectively monitor the progression of the transaction.

These signals are discussed below:

The STARTsignal indicates to the state machine that it should begin a

transaction. This signal is generated by the user application. The

source of this signal will vary depending on the specific user applica-

tion function. The logic in the user application that generates the

START signal must not assert START in the following cases:

• Initiator write and FIFO empty

• Initiator read and FIFO full

Failure to observe this will lead to data loss or corruption. Once an

initiator transaction is started, at least one data phase will complete.

The DIR  signal indicates the direction of the desired transfer, and is

generated by the user application. The DIR  signal should not change

from the time STARTis asserted until the end of the initiator transfer.

Initiator writes are selected by driving DIR  to logic high.

The signals M_ADDR_N and M_DATA are outputs of the PCI user inter-

face that are used by the state machine. The signal M_DATA_FELL
indicates that a falling edge has been detected on M_DATA. This is

generated by the following code.

always @(posedge CLK or posedge RST)

begin : edge_detect

if (RST) M_DATAQ = 1’b0;

else M_DATAQ = M_DATA;

end

assign M_DATA_FELL = !M_DATA & M_DATAQ;

The FATAL signal is derived from PCI interface signals. The FATAL
signal indicates that a master abort or target abort has occurred.

This information is obtained from the extended status signals,

CSR[39:32] . The extended status information is valid one clock

cycle after a particular event has occurred on the PCI Bus. Unless the

status is used during that cycle, it must be registered to preserve it for
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later use. The following code performs the task of preserving the

status information from the final data phase.

always @(posedge CLK or posedge RST)

begin : watch_status

if (RST) FATAL = 1’b0;

else if (!M_ADDR_N) FATAL = 1’b0;

else if (M_DATA) FATAL = CSR[39] | CSR[38];

end

In the previous example on single transfers, the transaction status

was monitored to detect if the target signalled a retry. In this example,

the state machine automatically requests transactions until the

transfer counter is zero. The actual behavior can be modified to suit

the user application by making changes to the state machine.

Note that the PCI Local Bus Specification requires initiators to repeat

transactions terminated by the target with retry. However, for system

robustness, it is advisable to have the initiator monitor the number of

times it is retried, so that it can abort transfer attempts that are met

with an excessive number of retries from the target.

The BACK_UP signal indicates that the FIFO must be backed up to

compensate for speculative reads that can occur during initiator

writes. The generation of this signal is discussed after the state

machine is presented.

The final signal required by the state machine is the DONEsignal. This

signal indicates to the state machine that a transaction sequence has

completed. This is asserted when the transfer length counter has

reached zero.

always @(posedge CLK or posedge RST)

begin : transfer_counter

if (RST) XFER_CNT = 4’h0;

else if (START) XFER_CNT = BURST_LENGTH;

else if (M_DATA_VLD) XFER_CNT = XFER_CNT - 4’h1;

end

assign DONE = (XFER_CNT == 4’h0);
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This counter is loaded from a signal named BURST_LENGTH that is

provided by the user application. Note that this counter does not

need to be backed up, as it counts actual transfers, not anticipated

transfers.

The State Machine
The state machine is shown in Figure 14-4, "User Application State

Machine". This design is intended to perform initiator burst transac-

tions of any length less than the size of the FIFO.

Figure 14-4 User Application State Machine

Each state performs a specific step in the sequence. The individual

states and their purposes are listed below.
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IDLE_S is the idle state. During this state, no initiator activity takes

place, and the state machine waits for the user application to assert

START. Once STARThas been asserted, the state machine proceeds to

the REQ_S state.

REQ_S is the request state. During this state, a request is made to

begin an initiator transaction. The state machine then branches based

on the value of the DIR  signal. If DIR  indicates an initiator read, the

next state is READ_S. Otherwise, the next state is WRITE_S.

READ_S and WRITE_S are data transfer states. The state machine

stays in READ_S or WRITE_S until it detects that the transaction is

over. The transaction is over when M_DATA_FELL is asserted. This

can result from either premature target termination (retry or discon-

nect), the expiration of the internal latency timer, or natural transac-

tion termination due to the assertion of COMPLETE. The COMPLETE
signal is asserted by other logic that monitors FIFO status flags and

the transfer counter.

These states are identical except that the state machine outputs differ.

The output logic is discussed in the next section. Since DIR  is avail-

able in the user application, these two states may be reduced into a

single XFER_S state if DIR  is used in the data register control equa-

tions. The states are separate in this example for clarity. In more elab-

orate designs, it is often desirable to split the state machine into

separate read and write state machines.

Whether in READ_S or WRITE_S, the state machine branches after

the transfer state based on the FATAL signal. If a fatal error has

occurred, the state machine moves to the DEAD_S state. Otherwise,

the state machine moves to the OOPS_S state.

DEAD_S is the terminal state for handling fatal errors. In practice, the

user application should provide some method for resetting the state

machine to handle such errors.

OOPS_S is the transaction evaluation state. If the FIFO must be

backed up, it is done in this state. Upon exit from this state, the state

machine evaluates the DONE signal. If DONE is asserted, the state

machine transitions to IDLE_S, otherwise it transitions to the REQ_S

state to request another transaction.

The state machine shown in Figure 14-4, "User Application State

Machine" could be implemented as shown:

always @(posedge CLK or posedge RST)
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begin : initiator_fsm

if (RST) STATE = IDLE_S;

else case (STATE)

IDLE_S : begin

if (START) STATE = REQ_S;

else STATE = IDLE_S;

end

REQ_S : begin

if (DIR) STATE = WRITE_S;

else STATE = READ_S;

end

WRITE_S : begin

if (M_DATA_FELL)

begin

if (FATAL) STATE = DEAD_S;

else STATE = OOPS_S;

end

else STATE = WRITE_S;

end

READ_S : begin

if (M_DATA_FELL)

begin

if (FATAL) STATE = DEAD_S;

else STATE = OOPS_S;

end

else STATE = READ_S;

end

DEAD_S : STATE = DEAD_S;

OOPS_S : begin

if (BACK_UP) STATE = OOPS_S;

else if (DONE) STATE = IDLE_S;

else STATE = REQ_S;

end
14-12 Xilinx Intellectual Property Solutions



Initiator Burst Transfers
default : STATE = IDLE_S;

endcase

end

Outputs to the PCI Interface
The state machine in the user application is responsible for driving

several signals which are output to the PCI interface. These signals

are discussed below along with the logic required to generate them.

This discussion assumes the existence of a 32-bit START_ADDRsignal

provided by other logic in the user application. This signal represents

the initial PCI Bus address for the desired target. The source of this

signal will vary depending on the specific user application function.

Before requesting a transaction, the user application should indicate

that it is ready to transfer data. Although it is possible to initiate a

transaction and then insert wait states using the M_READYsignal, bus

bandwidth is conserved by requesting a transaction only after the

user application is ready to transfer data. In this example, the user

application is always ready.

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized_a

if (RST) M_READY = 1’b0;

else M_READY = 1’b1;

end

The M_READY signal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop,

although it is permitted to drive it from combinational logic.

Note: Never tie this signal to logic one or to logic zero.

The state machine initially requests access to the PCI Bus by asserting

REQUEST. This is done in the REQ_S state and results in the assertion

of REQ_O. The REQUEST signal must only be asserted for a single

cycle to initialize a request. Note that the bus master enable bit in the

command register must be set before the PCI interface is able to

request the bus. This is the responsibility of the host bridge and

system configuration software.

assign REQUEST = (STATE == REQ_S);
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The REQUESTHOLD signal is not used in this example, and is simply

assigned to logic zero.

assign REQUESTHOLD = 1’b0;

When the PCI interface indicates that it has received a bus grant, the

user application must drive the target address on the ADIO bus. This

address, stored in the initiator address pointer, is presented on the

PCI Bus during the address phase.

always @(posedge CLK or posedge RST)

begin : init_addr_pointer

if (RST) ADDRESS = 30’h0;

else if (START) ADDRESS = START_ADDR[31:2];

else if (M_DATA_VLD) ADDRESS = ADDRESS + 30’h1;

end

assign ADDR_OE = M_ADDR_N;

assign ADIO = ADDR_OE ? 32’bz : {ADDRESS, 2’b00};

Simultaneously, the user application must also drive M_CBE to indi-

cate the desired PCI Bus command. At other times, the M_CBE signal

is used to indicate byte enables. In this example, the initiator

performs memory read and memory write transactions (commands

0x6 and 0x7, respectively), depending on the value of the DIR  signal.

All bytes are enabled. The bus command and byte enables are easily

modified to accommodate the requirements of the user application.

assign COMMAND = {3’b011, DIR};

assign BYTE_ENABLE = 4’b0000;

assign M_CBE = M_ADDR_N ? BYTE_ENABLE : COMMAND;

Throughout the entire transaction, the user application must drive

M_WRDN to indicate the desired transfer direction. This signal must

remain constant during a transaction. By assigning it to track the DIR
signal, which was stipulated to be constant during a transaction, this

requirement is met.

assign M_WRDN = DIR;

The M_WRDN signal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop,

although it is permitted to drive it from combinational logic.
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Note: Never tie this signal to logic one or to logic zero.

The COMPLETE signal indicates to the PCI interface that it should

finish the current transaction. This is determined by the current

transfer counter value. The logic presented below is derived from the

example in an earlier chapter on data phase control.

assign CNT3 = (XFER_CNT == 4’h3);

assign CNT2 = (XFER_CNT == 4’h2);

assign CNT1 = (XFER_CNT == 4’h1);

In this example, initiator wait states are not used. It is critical to

reduce the logic as much as possible for timing reasons.

assign FIN1 = CNT1 & REQUEST;

assign FIN2 = CNT2 & M_DATAQ;

assign FIN3 = CNT3 & M_DATA_VLD;

assign ASSERT_COMPLETE = FIN1 | FIN2 | FIN3;

always @(posedge CLK or posedge RST)

begin : finish_up

if (RST) HOLD_COMPLETE = 1’b0;

else if (M_DATA_FELL) HOLD_COMPLETE = 1’b0;

else if (ASSERT_COMPLETE) HOLD_COMPLETE = 1’b1;

end

assign COMPLETE = ASSERT_COMPLETE | HOLD_COMPLETE;

The COMPLETEsignal must not be assigned a static value. For timing

reasons, this signal should be driven from the output of a flip-flop, if

possible. In practice, it is usually driven by combinational logic.

Note: Never tie this signal to logic one or to logic zero.

To determine the number of times the FIFO must be backed up after

an initiator write, the user application must include a small state

machine to monitor the difference between anticipated transfers and

actual transfers.

Anticipated transfers are signalled by M_SRC_EN, qualified by the TE
flag, as an empty FIFO cannot be advanced. Actual transfers are

signalled by M_DATA_VLD.
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assign ANTICIPATED = M_SRC_EN & !TE;

always @(posedge CLK or posedge RST)

begin : oops_counter

if (RST) OOPS = 2'b00;

else

case({ANTICIPATED, M_DATA_VLD, BACK_UP, OOPS})

5'b00000: OOPS = 2'b00;

5'b00001: OOPS = 2'b01;

5'b00010: OOPS = 2'b10;

5'b00011: OOPS = 2'b11;

5'b00100: OOPS = 2'b00;

5'b00101: OOPS = 2'b00;

5'b00110: OOPS = 2'b01;

5'b00111: OOPS = 2'b10;

5'b01000: OOPS = 2'b00;

5'b01001: OOPS = 2'b00;

5'b01010: OOPS = 2'b01;

5'b01011: OOPS = 2'b10;

5'b01100: OOPS = 2'b00;

5'b01101: OOPS = 2'b00;

5'b01110: OOPS = 2'b00;

5'b01111: OOPS = 2'b01;

5'b10000: OOPS = 2'b01;

5'b10001: OOPS = 2'b10;

5'b10010: OOPS = 2'b11;

5'b10011: OOPS = 2'b11;

5'b10100: OOPS = 2'b00;

5'b10101: OOPS = 2'b01;

5'b10110: OOPS = 2'b10;

5'b10111: OOPS = 2'b11;

5'b11000: OOPS = 2'b00;

5'b11001: OOPS = 2'b01;
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5'b11010: OOPS = 2'b10;

5'b11011: OOPS = 2'b11;

5'b11100: OOPS = 2'b00;

5'b11101: OOPS = 2'b00;

5'b11110: OOPS = 2'b01;

5'b11111: OOPS = 2'b10;

default : OOPS = 2'b00;

endcase

end

assign BACK_UP = (| OOPS) & (STATE == OOPS_S);

This state machine describes a two bit saturating up/down counter

with one increment input and two decrement inputs. As required, it

tracks the number of actual transfers versus the number of antici-

pated transfers. The BACK_UP signal is asserted when the state

machine is in the OOPS_S state and the OOPS counter is non-zero.

This backs up the FIFO and decrements the OOPS counter until this

counter is zero. Once BACK_UP is deasserted, the state machine

proceeds to the next state.

Control Signals
As a final consideration, the logic for the FIFO control signals as

shown in Figure 14-3, "Non-Prefetchable Data Source" are as follows:

assign FIFO_WR = (STATE == READ_S) & M_DATA_VLD;

assign FIFO_RD = (STATE == WRITE_S) & M_SRC_EN;

assign FIFO_OE = (STATE == WRITE_S) & M_DATA;

The generation of the BACK_UPsignal, which is also used by the state

machine, was presented previously.

Sample Transactions
The following figures illustrate typical burst read and write transac-

tions that result from implementing the logic presented in this

chapter.
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Figure 14-5 Burst Read Transaction with Normal Termination

Figure 14-5, "Burst Read Transaction with Normal Termination",

demonstrates the PCI interface filling the FIFO in the user applica-

tion. The target does not terminate the transaction. This figure also

shows the timing relationship between selected user application

signals and PCI Bus signals.
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Figure 14-6 Burst Write Transaction with Normal Termination

Figure 14-6, "Burst Write Transaction with Normal Termination",

demonstrates the PCI interface emptying the FIFO in the user appli-

cation. The target does not terminate the transaction. This figure also

shows the timing relationship between selected user application

signals and PCI Bus signals.
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Figure 14-7 Burst Read with Target Disconnect

Figure 14-7, "Burst Read with Target Disconnect", demonstrates the

PCI interface filling the FIFO in the user application. During the

transaction, the target disconnects.
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Figure 14-8 Burst Read Continues after Target Disconnect

Figure 14-8, "Burst Read Continues after Target Disconnect" shows

the user application requesting bus access again to complete the

transfer.
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Figure 14-9 Burst Write with Target Disconnect

Figure 14-9, "Burst Write with Target Disconnect", demonstrates the

PCI interface emptying the FIFO in the user application. During the

transaction, the target disconnects. Notice that the FIFO must be

backed up in this situation.
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Figure 14-10 Burst Write Continues after Target Disconnect

Figure 14-10, "Burst Write Continues after Target Disconnect" shows

the user application requesting bus access again to complete the

transfer.
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Chapter 15

Initiator 64-bit Extension

This chapter provides additional details about the initiator 64-bit

extension. Implementation of a user application which is a 64-bit

initiator is similar to the implementation of a 32-bit version. In addi-

tion to the wider data path, some provisions must be made for excep-

tional conditions which may arise during 64-bit transfers. Note that

64-bit transfers only apply to memory spaces. Other spaces do not

support this capability.

Initiator Extension Signals
In addition to the initiator signals presented in the “Initiator Data

Transfer and Control” chapter of this guide, there are a few additional

signals present in 64-bit implementations of the LogiCORE PCI inter-

face.

• ADIO[63:32]  -- this bidirectional bus provides the means for

64-bit data and address transfer to and from the PCI interface.

When the initiator start address is presented during the assertion

of M_ADDR_N by the PCI interface, the high portion of the bus is

reserved but must be driven with valid data. When driving data

onto the bus, the entire bus width should be driven. Note that 64-

bit addressing and dual address cycles are not supported.

• M_CBE[7:4] -- this output indicates the PCI command and byte

enables during an initiator transaction. When the command is

presented during the assertion of M_ADDR_Nby the PCI interface,

the high nibble is reserved but must be driven with valid data.

During data phases, this bus should be driven with the byte

enables for the extended data path.

• SLOT64 -- this signal enables the 64-bit extension signals

(AD_IO[63:32] , CBE_IO[7:4] , and PAR64_IO). This signal

must remain static at all times except at power-on and immedi-
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ately after a PCI Bus reset. The method for determining the

appropriate value for this signal is design and device family

dependent. Refer to the LogiCORE PCI Implementation Guide for

more details about SLOT64.

• REQUEST64 -- this output from the user application instructs the

PCI interface to request the PCI Bus and to begin a 64-bit initiator

transaction once GNT_I is asserted.

• M_FAIL64  -- this input indicates that a 64-bit transfer attempt

has encountered a 32-bit target. In such situations, the initiator

will transfer at most two 32-bit words before terminating the

transfer. This signal should be used to adjust the increment (step

size) of any initiator address pointers.

Controlling 64-bit Transfers
The concepts presented in earlier chapters apply to 64-bit transfers.

The steps for transfer requests and data phase control are the same.

Extending the data path of the example presented in the “Initiator

Data Phase Control” chapter of this guide yields the following wave-

forms.
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Figure 15-1 Two QWORD Initiator Read Transfer

Figure 15-1, "Two QWORD Initiator Read Transfer" demonstrates the

PCI interface performing a burst read transfer from a 64-bit target. In

this case, the REQUEST64 signal is asserted instead of the REQUEST
signal The COMPLETE logic remains the same, but the transfer

counter (and any address pointer) now must track QWORDs instead

of DWORDs.
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Figure 15-2 Two QWORD Initiator Write Transfer

Figure 15-2, "Two QWORD Initiator Write Transfer" demonstrates the

PCI interface performing a burst write transfer to a 64-bit target.

Again, the REQUEST64 signal is used and the transfer counter (and

any address pointer) tracks QWORDs instead of DWORDs.

Additional Considerations
The control of 64-bit initiator transfers is similar to the 32-bit case.

However, the flexibility of the PCI interface opens the door to poten-

tial protocol violations by the user application. For this reason, the

following points must be considered when designing an initiator

control state machine.
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Only Perform Burst Transfers
Do not request single data phase 64-bit transactions. The PCI inter-

face does not know if a 64-bit or a 32-bit target will respond to a 64-bit

transaction request. For this reason, the interface does not know

when to deassert FRAME_IO and REQ64_IO for a single data phase

transfer. Instead, request a 32-bit transfer and perform two data

phases.

Only Use Aligned Addresses
The PCI Local Bus Specification forbids initiators from requesting

unaligned 64-bit transfers. The user application should never initiate

a 64-bit transfer with an address that is not aligned on a QWORD

boundary. Specifically, the low three address bits must be zero.

Only Use Allowed Commands
The PCI Local Bus Specification states that 64-bit transfers apply to

memory spaces only. The user application should never initiate a 64-

bit transfer using non-memory commands. As a 64-bit initiator, the

LogiCORE PCI interface supports the following commands:

• Memory Read

• Memory Write

• Memory Read Multiple

• Memory Read Line

Monitor the Target Response
Under ideal conditions, a 64-bit target will respond to a 64-bit transfer

request by the PCI interface. Unfortunately, this response is not guar-

anteed in an open system. A 32-bit response may occur when:

• The target does not support 64-bit transfers

• The PCI interface is installed in a 32-bit system

In either case, the PCI interface perceives the target as a 32-bit agent

on the bus. When the LogiCORE PCI interface encounters a 32-bit

target as a 64-bit initiator, it will automatically terminate the transfer

after two 32-bit data phases. Depending on the behavior of the target,

different results are possible.
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If the target terminates the transfer attempt with retry, the user appli-

cation is required to retry the original 64-bit transaction exactly as it

occurred the first time -- even though the user application may now

be aware that the target is not 64-bit.

When the PCI interface detects a 32-bit target responding to a 64-bit

transfer attempt, it asserts M_FAIL64 . The user application must use

this signal to adjust the increment (step size) for any internal counters

or pointers. This includes address pointers, data pointers, and back

up counters. Once the transfer completes, it is the responsibility of the

user application to request another transfer and continue as a 32-bit

agent.

The following waveforms are an example of possible situations

which may arise when a 64-bit transfer request is met with a 32-bit

target response. The data path signals in these figures are broken into

high and low halves to demonstrate the actual data movement

during transfers where M_FAIL64  is asserted by the PCI interface.
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Figure 15-3 32-bit Target Responds to 64-bit Read

Figure 15-3, "32-bit Target Responds to 64-bit Read" shows the PCI

interface requesting a 64-bit read burst. The target is a 32-bit agent

and does not assert ACK64_IO in response to REQ64_IO.

Once the PCI interface detects that the target is a 32-bit agent, it

asserts M_FAIL64 . The PCI interface automatically inserts a wait

state after the first data phase. During that wait state, the interface

automatically copies the byte enables on CBE_IO[7:4]  to

CBE_IO[3:0] . Then the PCI interface completes the transfer on the

second data phase. In this example, the target does not disconnect.
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The user application must monitor M_FAIL64  during a transfer to

correctly interpret the transaction. If M_FAIL64  is not asserted, the

user application may complete the transfer using the full 64-bit data

path. If M_FAIL64  is asserted, the user application should treat the

transfer as a 32-bit transfer. This implies:

• Capturing data from ADIO[31:0]  and ignoring ADIO[63:32]

• Assembling data into 64-bit chunks, if required

• Adjusting the increment (step size) for any counters or pointers

At the end of this transfer, the bus address is QWORD aligned.

Although the PCI Local Bus Specification permits this transfer to be

continued by requesting another 64-bit transfer, it is unwise to do so

from a bandwidth perspective. Once the target is known to be a 32-bit

agent, the user application should request a 32-bit transfer.
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Figure 15-4 32-bit Target Disconnects with Data on Read

Figure 15-4, "32-bit Target Disconnects with Data on Read" demon-

strates a transaction that is similar to Figure 15-3, "32-bit Target

Responds to 64-bit Read" with the exception that the target discon-

nects after the first data phase.

Once the PCI interface detects that the target is a 32-bit agent, it

asserts M_FAIL64 . Since the target disconnects, the PCI interface

does not insert a wait state to multiplex the byte enables for the

second data phase.
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As before, the user application must monitor M_FAIL64  during the

transfer to correctly interpret the transaction. If M_FAIL64  is not

asserted, the user application may complete the transfer using the full

64-bit data path. If M_FAIL64 is asserted, the user application should

treat the transfer as a 32-bit transfer. This implies:

• Capturing data from ADIO[31:0]  and ignoring ADIO[63:32]

• Assembling data into 64-bit chunks, if required

• Adjusting the increment (step size) for any counters or pointers

At the end of this transfer, the bus address is not QWORD aligned.

The PCI Local Bus Specification stipulates that this transfer must be

continued as a 32-bit transfer due to the misalignment.
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Figure 15-5 32-bit Target Responds to 64-bit Write

Figure 15-5, "32-bit Target Responds to 64-bit Write" shows the PCI

interface requesting a 64-bit write burst. The target is a 32-bit agent

and does not assert ACK64_IO in response to REQ64_IO.

Once the PCI interface detects that the target is a 32-bit agent, it

asserts M_FAIL64 . The PCI interface automatically inserts a wait

state after the first data phase. During that wait state, the interface

automatically copies the byte enables on CBE_IO[7:4]  to

CBE_IO[3:0] . In the next cycle, the interface copies the data from

AD_IO[63:32]  to AD_IO[31:0] . Then the PCI interface completes
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the transfer on the second data phase. In this example, the target does

not disconnect.

Since M_FAIL64  is asserted, the user application must treat the

transfer as a 32-bit transfer and adjust the increment (step size) for

any counters or pointers. The PCI interface automatically handles the

data multiplexing internally when performing initiator writes.

At the end of this transfer, the bus address is QWORD aligned.

Although the PCI Local Bus Specification permits this transfer to be

continued by requesting another 64-bit transfer, it is unwise to do so

from a bandwidth perspective. Once the target is known to be a 32-bit

agent, the user application should request a 32-bit transfer.
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Figure 15-6 32-bit Target Disconnects with Data on Write

Figure 15-6, "32-bit Target Disconnects with Data on Write" demon-

strates a transaction that is similar to Figure 15-5, "32-bit Target

Responds to 64-bit Write" with the exception that the target discon-

nects after the first data phase.

Once the PCI interface detects that the target is a 32-bit agent, it

asserts M_FAIL64 . Since the target disconnects, the PCI interface

does not insert a wait state to multiplex the data and byte enables for

the second data phase.
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Since M_FAIL64  is asserted, the user application must treat the

transfer as a 32-bit transfer and adjust the increment (step size) for

any counters or pointers. The PCI interface automatically handles the

data multiplexing internally if the target does not disconnect.

At the end of this transfer, the bus address is not QWORD aligned.

The PCI Local Bus Specification stipulates that this transfer must be

continued as a 32-bit transfer due to the misalignment.
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Chapter 16

Other Bus Cycles

The purpose of this chapter is to demonstrate the use of more esoteric

commands with the PCI interface. In addition to supporting memory

read and memory write commands, the LogiCORE PCI interface

supports a host of other PCI Bus commands as both a target and an

initiator. Many of these commands do not require additional design

effort. The examples presented in earlier chapters of this book may be

easily modified to support other commands.

As a target, the PCI interface can support I/O commands if at least

one of the Base Address Registers is configured as an I/O space.

Additionally, the PCI target can handle all extended memory

commands such as memory read multiple, memory read line, and

memory write and invalidate, as long as at least one Base Address

Register is configured as a memory space.

As an initiator, the PCI interface can issue both I/O commands and

all memory commands except memory write and invalidate. The user

application simply presents the appropriate command to the PCI

interface when initiating a transfer. Note that I/O commands may

not be used with multiple data phase transfers, as required by the PCI
Local Bus Specification.

Supported Commands
Table 16-1, "Supported PCI Bus Commands" provides a list of

commands supported by the LogiCORE PCI interface. The first
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portion of this chapter discusses target operations, while the second

portion discusses initiator operations.

Note: Commands listed as “Yes” indicate full support. Those listed as

“Ignore” are not supported by the PCI target and are ignored. Those

listed as “No” are not supported by the PCI initiator and must not be

used.

Table 16-1  Supported PCI Bus Commands

Command Support

Code Name Target Initiator

0000 Interrupt Acknowledge Yes Yes

0001 Special Cycle Ignore Yes

0010 I/O Read Yes Yes

0011 I/O Write Yes Yes

0100 Reserved Ignore No

0101 Reserved Ignore No

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved Ignore No

1001 Reserved Ignore No

1010 Configuration Read Yes Yes

1011 Configuration Write Yes Yes

1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle Ignore No

1110 Memory Read Line Yes Yes

1111 Memory Write Invalidate Yes No
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Target Interrupt Acknowledge
Interrupt acknowledge commands issued on the PCI Bus are implic-

itly addressed to the system interrupt controller. These bus cycles are

typically initiated by the host bridge.

In designs where the user application contains the system interrupt

controller, it is necessary for the PCI interface to respond to interrupt

acknowledge cycles as a target. This behavior is enabled using the

“Interrupt Acknowledge” configuration option as discussed in the

“Customizing the LogiCORE PCI Interface” chapter of this guide.

Enabling this option forces the last available Base Address Register in

the PCI interface to respond to interrupt acknowledge cycles.

always @(posedge CLK or posedge RST)

begin : decode_int_ack

if (RST) INT_BAR = 1’b0;

else if (BASE_HIT[2]) INT_BAR = 1’b1;

else if (!S_DATA) INT_BAR = 1’b0;

end

For this example, assume the existence of a 32-bit signal named

VECTOR which holds the interrupt vector. This signal is generated

elsewhere in the user application.

assign ACK_OE = INT_BAR & S_DATA;

assign ADIO = ACK_OE ? VECTOR : 32’bz;

As a general rule, interrupt acknowledge cycles may be terminated

like other bus cycles. For this example, however, the transfer is not

terminated by the PCI interface.

always @(posedge CLK or posedge RST)

begin : cannot_be_optimized

if (RST)

begin

S_ABORT = 1’b1;

S_READY = 1’b0;

S_TERM = 1’b1;

end

else
LogiCORE PCI Design Guide 16-3



Other Bus Cycles
begin

S_ABORT = 1’b0;

S_READY = 1’b1;

S_TERM = 1’b0;

end

end

The code above generates the waveform shown Figure 16-1, “Target

Accepts Interrupt Acknowledge Cycle”. In this situation, the inter-

rupt vector is returned to the host bridge during the cycle.

Figure 16-1 Target Accepts Interrupt Acknowledge Cycle

Target Configuration Cycles
The PCI Local Bus Specification defines three separate address spaces:

• Memory space

• I/O space

• Configuration space
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The LogiCORE PCI interface, by default, implements the first 64

bytes of a type zero configuration space header, shown in Table 16-2

“PCI Configuration Space Header”. Additional configuration space is

available if the “User Config Space” option is enabled in the configu-

ration file.

All unimplemented configuration space registers return a value of

zero during configuration read cycles and no operation occurs during

configuration write cycles.

Table 16-2  PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header Type Lat. Timer Line Size 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Base Address Register 2 18h

Base Address Register 3 1Ch

Base Address Register 4 20h

Base Address Register 5 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max_Lat Min_Gnt Intr. Pin Intr. Line 3Ch

User Config Space Begins 40h
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Shaded address locations are not implemented in the LogiCORE PCI

interface default configuration. These locations return zero during

configuration read accesses. Other locations, such as the CapPtr, or

Base Address Registers, will return zeros if disabled.

This section discusses some features of the configuration space that

exist in the PCI interface, and presents methods for handling other

configuration space accesses. Typically, user application designs will

not need to extend the configuration space that is pre-implemented in

the PCI interface.

This information is intended mainly for advanced users who wish to

implement the user accessible area of the configuration space. This

section is divided into the following sub-sections:

• Setup for Typical Applications

• User Definable Configuration Space

• Capabilities List Pointer

• Externally Supplied Subsystem Identification

Setup for Typical Applications
Configuration transactions are automatically handled by the PCI

interface. The signals C_TERM and C_READY must be asserted by the

user application at all times to allow the PCI interface to respond to

the supported configuration space addresses. All unsupported

addresses return zero when accessed, as mandated by the PCI Local
Bus Specification.

For a typical application that uses only the pre-implemented configu-

ration space, C_TERM and C_READY must always be asserted to

ensure that the PCI interface terminates all configuration accesses by

disconnecting with data on the first data phase. The PCI interface

does not handle burst configuration cycles and must disconnect.

assign C_READY = 1’b1;

assign C_TERM = 1’b1;

Note: The ADIO bus is actively driven by the PCI interface during

configuration cycles. Care should be taken as to avoid contention on

the ADIO bus.
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User Definable Configuration Space
The user definable region of configuration space resides at and above

address 0x40, up to the top of configuration space at 0xFF. Access to

this region is controlled by the “User Config Space” option in the

configuration file.

With this option disabled, the PCI interface returns zeros when this

region is accessed. If the option is enabled, the PCI interface does not

automatically return zeros, but instead allows the user application to

treat the configuration access like any other non-burst target access.

Data is transferred much like non-burst target accesses. A typical

configuration register is interfaced as shown in Figure 16-2, “Example

Configuration Register”.

Figure 16-2 Example Configuration Register

The following signals are associated with configuration data transfer

to and from the PCI interface. These signals are used in conjunction

with other signals used for target data transfer. References to inputs

and outputs are made with respect to the user application.

• CFG_HIT -- this input indicates that the PCI interface recognizes

that it is the target of a current PCI configuration transaction. This

signal is similar to the BASE_HIT signals used in target accesses.

• CFG_VLD -- this input indicates that a valid PCI configuration

address is available on the ADIO bus, and may be used as a clock

enable by the user application to capture a copy of this address.

As the PCI interface does not support configuration burst trans-

actions, the latched address present on the ADDR[31:0]  bus

should suffice. The CFG_VLD signal is asserted for a single cycle,

coincident with ADDR_VLD.

X8289

REGISTER
Q[31:0]

ADIO[31:0]

OE

LOAD

CLK
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• C_READY-- this output from the user application indicates that it

is ready to transfer data, and can be used to insert wait states

during the first data phase of a transaction. Together with

C_TERM, it is also used to signal different types of target termina-

tion for configuration accesses. This signal has the same function-

ality as S_READY for target accesses.

• C_TERM -- this output from the user application indicates that

data transfer should cease. It is also used with C_READYto signal

different types of target termination for configuration accesses.

This signal has the same functionality as S_TERM for target

accesses.

The Verilog pseudocode to decode configuration transactions can be

represented as follows:

always @(posedge CLK or posedge RST)

begin : decode_cfgspace

if (RST)

begin

CFG_RD = 1’b0;

CFG_WR = 1’b0;

end

else

begin

if (CFG_HIT)

begin

CFG_RD = !S_WRDN;

CFG_WR = S_WRDN;

end

else if (!S_DATA)

begin

CFG_RD = 1’b0;

CFG_WR = 1’b0;

end

end

end
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This is nearly identical to the decoding used for normal target trans-

actions. In this case, the PCI Bus command has been pre-decoded as a

configuration read or configuration write command through the logic

that generates CFG_HIT.

Configuration Writes

During a configuration write operation, data is captured from the

ADIO bus to a data register in the user application by asserting the

load input. The assignment for the load input of the register would

be:

assign LOAD = CFG_WR & S_DATA_VLD & fn(ADDR[7:2]);

If the user application supports byte-addressable registers, separate

load signals should be generated for each byte in the register by

further gating the expression shown above. The S_CBE signals are

available for this purpose.

Configuration Reads

During a target read operation, data from the user application is

driven onto the ADIO bus. To do this, the user application must assert

the output enable for the desired register. The assignment for the

output enable would then be:

assign OE = CFG_RD & fn(ADDR[7:2]) & S_DATA;

Note: Do not drive the ADIO bus from the user application when the

configuration transaction is not addressing user configuration space.

The PCI interface responds to addresses below 0x40 and will drive

ADIO during accesses of this region. When the address is 0x40 and

above, always drive the entire ADIO bus with valid data. Unimple-

mented regions must return zero.

Configuration Data Phase Control

Data phase control is achieved using the C_TERM and C_READY
signals. Combinations of the two control signals yield the following

three modes:

• Wait -- the wait mode inserts wait states at the beginning of a

configuration transaction.

• Retry -- this mode terminates the current PCI Bus transaction

without data transfer on the final data phase.
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• Disconnect with data -- this mode terminates the current PCI Bus

transaction with data transfer on the first data phase.

Table 16-3, "Configuration Data Phase Control", shows the three

modes of operation and the corresponding C_TERM and C_READY
values. Never assert C_READY while C_TERM is deasserted, as the

LogiCORE target does not support configuration bursts as a target.

Note: The C_TERM and C_READY control signals affect termination

for all of configuration space, not just user configuration space.

If user configuration space must behave differently from the pre-

implemented configuration space in the PCI interface, use the

example shown below as a guide.

always @(posedge CLK or posedge RST)

begin : cbl_timer

if (RST) TIMER = 4’h0;

else if (CFG_VLD) TIMER = BL_WAIT[3:0];

else if (TIMER != 4’h0) TIMER = TIMER - 4’h1;

end

assign BLAT_RDY = (TIMER <= 4’h4);

assign USER_CFG = ADDR[7] | ADDR[6];

Table 16-3  Configuration Data Phase Control

Condition Bus Signals
From User Application

C_TERM C_READY

Wait TRDY_IO = 1
DEVSEL_IO = 0

STOP_IO = 1

Low Low

Retry TRDY_IO = 1
DEVSEL_IO = 0

STOP_IO = 0

High Low

Disconnect

With Data

TRDY_IO = 0
DEVSEL_IO = 0

STOP_IO = 0

High High
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assign TERMINATE = (!USER_CFG | BLAT_RDY) & S_DATA;

always @(posedge CLK or posedge RST)

begin : keep_it_registered

if (RST)

begin

C_READY = 1’b0;

C_TERM = 1’b0;

end

else

begin

C_READY = (CFG_RD | CFG_WR) & TERMINATE;

C_TERM = (CFG_RD | CFG_WR) & TERMINATE;

end

end

In this example, the PCI interface inserts wait states until it decodes

the address of the configuration access. Configuration space accesses

are not bandwidth critical, and the method in this example is simple

to implement.

Accesses to address 0x40 and above are delayed by the insertion of

additional wait states. The number of wait states are specified by the

value of the BL_WAIT signal. This example generates transactions

like those shown below.
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Figure 16-3 Configuration Read with Wait States

In Figure 16-3, “Configuration Read with Wait States”, the PCI inter-

face is delaying the completion of a configuration read. This partic-

ular transaction is targeting user configuration space.
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Figure 16-4 Configuration Write with Wait States

In Figure 16-4, “Configuration Write with Wait States”, the PCI inter-

face is delaying the completion of a configuration write. This partic-

ular transaction is also targeting user configuration space.

Capabilities List Pointer
The LogiCORE PCI interface supports a capabilities list through two

options in the configuration file. The capabilities bit in the PCI status

register indicates whether or not the design implements a linked list

of extended capabilities. This bit is set through the “Capabilities List

Enable” option in the configuration file.

If the capabilities bit in the status register is set, the design must

implement the Cap_Ptr register at configuration space address 0x34.

The Cap_Ptr register contains the configuration space address of the

first item in the capabilities list. The capabilities list is a linked list of

registers for implementing various features. Power management

registers are one such feature that are linked into this list.
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The PCI interface implements the Cap_Ptr register. The value of this

register is set through the “Capabilities List Pointer” option in the

configuration file. Values 0x00 through 0x3F are not valid values for

the Cap_Ptr register because they point into the standard PCI config-

uration header.

After the capabilities bit is enabled and the Cap_Ptr is set to an appro-

priate value, the user application must implement a capabilities list in

user configuration space.

Externally Supplied Subsystem Identification
The Subsystem Vendor ID and Subsystem ID fields are used to

further differentiate designs which are founded upon the same base

design.

As a fictional example, consider a video controller produced by a

semiconductor manufacturer. The semiconductor manufacturer sets

the Vendor ID and Device ID to identify the video controller as their

design, but provides a means for various OEMs to set their own

Subsystem Vendor ID. This way, products from different OEMs may

be distinguished from each other, even though they use the same

graphics chip. The same idea applies to the Subsystem ID, which may

be used to distinguish different “trim” levels of a particular product

from any single OEM.

For most designs, these values are stored in a configuration ROM

table, as specified through the CFG bus and the static configuration

file. For applications that require a dynamic method of supplying this

information, the SUB_DATA bus is available. The user should enable

the “External Subsystem ID and Subvendor ID” option in the config-

uration file and drive the proper value onto SUB_DATA.

This feature is provided so that a single design (bitstream) may be

used in multiple board designs where a different Subsystem Vendor

ID or Subsystem ID (or both) are required on each board.

Typical storage implementations for the external value include

pullup and pulldown resistors on user I/O pads or an external serial

memory. Regardless of the storage method, the value on SUB_DATA
must be stable and valid before the PCI interface can respond to

configuration cycles.

Using pullup and pulldown resistors on user I/O pads to drive

SUB_DATA provides stable and valid data shortly after power is
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applied. In this case, C_TERM and C_READY may be permanently

asserted.

If the user application drives SUB_DATAwith a value loaded from an

external serial memory, the data may not be immediately available.

Depending on the design, the user application may have to generate

configuration retries to allow time for SUB_DATA to become valid.

Initiator Interrupt Acknowledge
Interrupt acknowledge commands issued on the PCI Bus are implic-

itly addressed to the system interrupt controller. These bus cycles are

typically initiated by the host bridge. If the PCI interface and user

application are performing the functions of a host bridge, the user

application may issue interrupt acknowledge cycles as an initiator.

The example presented in the “Initiator Data Transfer and Control”

chapter of this guide is sufficient to issue interrupt acknowledge

transactions. The only change required is to alter the COMMAND value

to specify the correct bus command:

assign COMMAND = 4’b0000;

Note that the interrupt acknowledge command uses implied

addressing (the system interrupt controller is the implied target). For

this reason, the address presented during the address phase of the

transaction is not important. However, the AD_IO bus must be driven

with stable values. For this reason, do not neglect to drive the ADIO
bus with valid data during the assertion of M_ADDR_N, even if initi-

ating an interrupt acknowledge.

Figure 16-5, “Initiator Issues Interrupt Acknowledge Cycle” shows

the PCI interface issuing such a transaction.
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Figure 16-5 Initiator Issues Interrupt Acknowledge Cycle

The interrupt vector returned by the system interrupt controller is

stored in a register named Q.

Initiator Special Cycle
Special cycle commands issued on the PCI Bus are broadcast cycles to

one or more agents on the bus. These bus cycles are typically initiated

to relay important system information across the bus. The user appli-

cation may issue special cycles as an initiator. In order for this to be

useful, there must be another agent on the bus capable of monitoring

special cycles.

Note: The LogiCORE PCI target cannot monitor special cycles.

The example presented in the “Initiator Data Transfer and Control”

chapter of this guide is sufficient to issue special cycle transactions.

The only change required is to alter the COMMANDvalue to specify the

correct bus command:

assign COMMAND = 4’b0001;
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Special cycles are “addressed” to potentially every agent on the PCI

Bus. For this reason, the address presented during the address phase

of the transaction is not important. However, the AD_IO bus must be

driven with stable values. For this reason, do not neglect to drive the

ADIO bus with valid data during the assertion of M_ADDR_N.

No agent on the bus should respond to a special cycle by asserting

DEVSEL_IO. Since no agent responds, the PCI interface must perform

a master abort to end the transaction. Furthermore, because the PCI

interface knows that it is issuing a special cycle (and is expecting a

master abort) it should not set the master abort bit in the status

register.

Figure 16-6, “Initiator Issues Special Cycle” shows the PCI interface

issuing such a transaction.

Figure 16-6 Initiator Issues Special Cycle

The message field contained in the register named Q is broadcast on

the PCI Bus. Note that the master abort bit, CSR[29] , is not set even

though the transaction terminates with master abort.
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Initiator Configuration Cycles
In a typical PCI Bus system, reading and writing of configuration

registers is performed by a host bridge. The host bridge, sometimes

called a “north bridge,” is the hardware that bridges a host processor

bus and the PCI Bus.

The LogiCORE PCI interface is capable of acting as a host bridge. A

host bridge is a subset of a central resource as defined in Section 2.4 of

the PCI Local Bus Specification. A central resource, and a host bridge as

part of a central resource, require additional design considerations

beyond those for a generic PCI agent. Some of these design consider-

ations are system dependent.

Note: This chapter does not cover the system dependent design

considerations of a central resource. It is the responsibility of the

designer to address issues such arbitration, interrupt handling, error

handling, pullups, and the source of the system reset and clock

signals. Designers of PC-AT central resources should carefully review

Section 3.7.4 of the PCI Local Bus Specification, for additional details on

compliance requirements specific to the PC architecture.

There are three items of particular interest when designing a host

bridge with the LogiCORE PCI interface. The first is the generation of

IDSEL  signals, the second is the inclusion of appropriate logic in the

user application to allow the PCI interface to configure itself, and the

third is the generation of configuration cycles to external agents.

IDSEL Signal Generation
Section 3.7.4. of the PCI Local Bus Specification states that the method

used to drive the IDSEL  signals is left to the discretion of the host

bridge designer. However, only a single IDSEL  signal may be

asserted during the address phase of a configuration transaction. One

method mentioned in the specification is to use the upper word of the

address bus as the IDSEL  signals. Thus, IDSEL  of device 0 is

connected to AD[16] , and so on. This allows for sixteen devices to

reside on the PCI Bus.

Due to the extra loading on the ADbus by the IDSEL pins, the IDSEL
pin is usually resistively coupled to the ADbus. One exception to this

is noted in the electrical specification. If the input pin capacitance of

the IDSEL  pin of the agent is 8 pF or less, then direct coupling of the

AD bus to the IDSEL  pin is allowed.
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An alternative method is to use separate IDSEL  output pins on the

host bridge and route them to the various agents on the bus using

separate PCB traces.

If a resistor is used, then the signal driving the IDSEL pin may take a

long time to reach a valid logic level. Host bridges may solve the

timing problem by using address stepping to drive the address, but

not assert FRAME#, for one or more clock cycles. This allows the

IDSEL  pin to reach a valid logic level. Although certain implementa-

tions of the LogiCORE PCI interface use address stepping, the PCI

interface does not support this technique.

The designer should either use direct coupling or generate separate

IDSEL signals. For embedded applications, direct coupling of IDSEL
is recommended. The slight increase in bus propagation time may be

acceptable in many closed systems. It is the responsibility of the

designer to ensure that timing requirements are not violated.

Initiator Self Configuration Cycles
Since the initiator and target state machines in the LogiCORE PCI

interface are independent, it is possible to use the initiator state

machine to generate a configuration transaction aimed at the target

state machine.

The steps for generating self configuration cycles are very similar to

the steps for generating single data phase initiator transactions. The

initiator control signals are driven the same as in any other initiator

transaction, and the user application presents a configuration read or

configuration write command on M_CBE.

The IDSEL signal routed to IDSEL_I on the LogiCORE PCI interface

must be asserted during the address phase of the transaction. This is

easily accomplished by using the direct coupling method for IDSEL
generation described in the previous section. When the user applica-

tion drives an address onto the ADIO bus during M_ADDR_N asser-

tion, the bit pattern in the upper word of the address should result in

IDSEL_I  assertion for the interface.
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Figure 16-7 Self Configuration Read

A self configuration cycle must be signalled by the user application

no later than one cycle after REQUEST is asserted. This is done by

asserting CFG_SELF. This signal must remain asserted until the trans-

action is complete, which is signalled by the deassertion of M_DATA.
Figure 16-7, “Self Configuration Read” shows the correct behavior

and demonstrates the PCI interface reading its own command and

status register.

Internally, the interface uses the CFG_SELF signal to temporarily

force the value of the bus master enable bit of the command register.

This allows the interface to generate configuration transactions as a

bus master even when the bus master enable bit is cleared after a

system reset.

The CFG_SELFsignal also affects the internal data path, indicating to

the PCI interface that data will be transferred between the user appli-

cation and the interface over the ADIO bus. For this reason,
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CFG_SELF must always be asserted during self configuration trans-

actions, even after the bus master enable bit has been set.

During self configuration reads, the AD_IO bus is driven with invalid

data during the data phase of the transfer. The valid data is available

internally on the ADIO bus and is available to the user application.

This is generally not a concern, as the LogiCORE PCI interface is both

the initiator and the target.

No other agents will respond to the configuration transaction because

no other agent will sample its IDSEL asserted. Any agent attempting

to snoop the transaction (such as a bus analyzer) will not obtain

meaningful data.

Figure 16-8 Self Configuration Write

Figure 16-8, “Self Configuration Write” also demonstrates the correct

behavior. In this instance, the PCI interface is enabling itself by

writing to its command and status register. Notice that in both

figures, IDSEL_I is sampled during the address phase; at other times

it is ignored.
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Generation of Configuration Cycles to Other Agents
Once the host bridge is configured and enabled using self configura-

tion cycles, it can be used to configure other agents on the PCI Bus.

The steps for generating configuration cycles are identical to the steps

for generating other initiator transactions. The initiator control

signals are driven the same as in any other initiator transaction, and

the user application presents a configuration read or configuration

write command on M_CBE.

The IDSEL  signal for the configuration target must be asserted

during the address phase of the transaction. Again, this may be

accomplished by using the direct coupling method for IDSEL genera-

tion. When the user application drives an address onto the ADIO bus

during M_ADDR_N assertion, the bit pattern in the upper word of the

address should result in IDSEL  assertion for the configuration target.

When configuring external agents, the signal CFG_SELF must not be

asserted. Asserting this signal will result in a corrupt data transfer.

Other Considerations
While the PCI Local Bus Specification permits burst configuration

transactions and the LogiCORE PCI interface is capable of issuing

such transactions, it must respond to them with disconnect with data.

Internally, the PCI interface does not keep an address pointer for

configuration space addresses. To ensure this, tie the C_TERM and

C_READY signals to logic high.

Do not attempt self configuration burst transactions. Additionally, it

is recommended that burst cycles not be used for any configuration

transactions. The use of burst configuration will greatly complicate

the design of the user application.

Configuration transactions terminated with retry must be reissued, as

is the case with all other transactions terminated with retry. The host

bridge designer needs to determine the best order to perform retries.

One method, since configuration sequences are not usually time crit-

ical, is to retry the current transaction until it is completed or has

timed out. Another method is to push this responsibility on to the

configuration software by reporting retries to the host, and have the

configuration software accept responsibility for reissuing the transac-

tion at a later time.
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During the polling sequence for external agents, it is fully expected

that some master abort terminations will occur when polling empty

PCI slots. The host bridge application needs to be able to report this

condition to the host. Master abort terminations, as well as target

abort terminations, should not disable the host bridge from

performing further configuration cycles.
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Chapter 17

Error Detection and Reporting

The LogiCORE PCI interface generates parity, checks parity, and

reports errors as required by the PCI Local Bus Specification. For more

information regarding these specifications, refer to Section 3.8 of the

PCI Local Bus Specification.

These functions are done in a method that is transparent to the user

application. Certain classes of user applications, however, may need

to know if an error has occurred. The purpose of this chapter is to

demonstrate the behavior of the PCI interface when it encounters

parity errors.

Consider the target write shown in the waveform of Figure 17-1,

“Target Write with no Parity Errors”. This waveform shows a target

write which is not disrupted by parity errors. The subsequent

sections discuss the response of the PCI interface when parity errors

are introduced during the address phase and during data phases.
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Figure 17-1 Target Write with no Parity Errors

The figure shows the error reporting signals on the PCI Bus

(PERR_IO and SERR_IO) and the registered copies of these signals

provided to the user application (PERRQ_N and SERRQ_N).

Address Parity Errors
The LogiCORE PCI interface checks for parity errors during address

phases on the PCI Bus. As required by the PCI Local Bus Specification,

the PCI interface reports address parity errors via SERR_IO. A regis-

tered version of this signal is available to the user application as

SERRQ_N.

If an address parity error is detected, the PCI interface will either

claim the transaction and issue a target abort, or will not claim the

transaction at all. Figure 17-2, “Target Write with Address Parity

Error” shows the same transaction presented in Figure 17-1, “Target

Write with no Parity Errors” with an address parity error. Since the

PCI interface does not respond to the transaction, the initiator termi-

nates with master abort.
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Figure 17-2 Target Write with Address Parity Error

The user application may monitor for system errors on the PCI Bus

by sampling SERRQ_N. This signal indicates an address parity error

or other serious system error. In addition, the command and status

register state is available through the CSR[39:0]  bus.

The SERRQ_N signal passed to the user application is a registered

version of the system error signal, SERR_IO. This signal is for

reporting catastrophic system errors. Typically, the assertion of this

signal will result in a non-maskable interrupt being issued to the host.

If the user application is a host bridge design, it should monitor the

SERRQ_N signal and act accordingly.

Note: The SERR_IO signal is an open drain signal. It is passively

deasserted by a pullup after synchronous assertion by a bus agent.

This transition may take more than one clock cycle, which creates the

possibility of a metastable output on SERRQ_N. The logic in the user

application that generates a non-maskable interrupt should be

designed with this in mind. Use of a synchronizer is recommended.
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Data Parity Errors
The LogiCORE PCI interface checks for parity errors during data

phases on the PCI Bus when it is receiving data. As required by the

PCI Local Bus Specification, the PCI interface reports data parity errors

via PERR_IO. A registered version of this signal is available to the

user application as PERRQ_N.

If a data parity error is detected, the PCI interface will take no addi-

tional action other than signalling the error. However, if the user

application may take any steps it deems necessary, including transfer

termination. Figure 17-3, “Target Write with Data Parity Error” shows

the same transaction presented in Figure 17-1, “Target Write with no

Parity Errors” with a data parity error.

Figure 17-3 Target Write with Data Parity Error

The user application may monitor for parity errors on the PCI Bus by

sampling PERRQ_N. This signal indicates an address parity error or

other serious system error. In addition, the command and status

register state is available through the CSR[39:0]  bus.
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Design Constraints

To ensure that the PCI timing requirements are met when the user

design is added, the PCI LogiCORE interface uses timing constraints

during processing. The constraints file, used in combination with the

appropriate guide file, guarantees the required PCI performance.

This chapter is intended to discuss the following:

• The function of the constraints in the user constraints file (*.ucf )

• The generation of additional constraints for the user application

• The use of the physical constraints file (*.pcf )

• The function of the guide file (*.ncd )

Note: Do not modify or remove the constraints found in the user

constraints file. Customization of this file is allowed, but the modifi-

cations must not change the functionality of the supplied constraints.

Make absolutely no modifications to the guide file. Xilinx guarantees

PCI compliant timing only if the constraints file and guide file are

used during processing.

Supplied User Constraints
While there are separate constraints files for every part and package

combination, the constraints in each perform the same function.

These functions are:

• Pinout definition constraints

• Absolute placement constraints

• Timing constraints
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Pinout Definition Constraints
The pinout of the PCI interface is constrained in the user constraints

file to match the suggested pin ordering in the PCI Local Bus Specifica-
tion as closely as possible. In addition, the user constraints file

prohibits some device pins from being used to reserve them for

configuration and boundary scan.

Absolute Placement Constraints
A large number of absolute placement constraints are specified in the

user constraints file. These are intended to group critical logic

sections together. Additionally, the placement constraints align

internal datapath registers and three-state buffers in columns which

straddle the internal ADIO bus. The ADIO bus is formed by horizontal

long lines in the FPGA.

Timing Constraints
Timing constraints are specified in three distinct steps. First, time-

name (TNM) attributes are attached to specific instances in the design.

Next, timegroups (TIMEGRP) are created from timenames, if neces-

sary. Finally, timespecs (TIMESPEC) are formed by timing specifica-

tions between various timenames and timegroups.

Each device and package combination has unique timing constraints

to ensure full PCI compliance. Do not remove any constraints.

Additional User Constraints
Depending on the nature of the customized user design, it may be

necessary to modify or add constraints in the user constraints file.

• Change the instance name associated with USER_FFS to match

the instance name of the user application.

• If the user application has input and output pads of its own, add

a TNMfor USER_PADSand specify two additional TIMESPECs for

ALL_FFS to USER_PADS and USER_PADS to ALL_FFS.

Pinout constraints may be added as long as they do not conflict

with the pinout established for the PCI interface.
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• If the default PERIOD constraint does not adequately constrain

the user application, add TNMs, TIMEGRPs, and TIMESPECs as

needed to sufficiently constrain the design.

The PERIOD constraint has the lowest priority, so additional

TIMESPECs will “carve” paths out of this default constraint.

• In complex designs, or designs involving multiple clock

domains, it may be necessary to entirely remove the PERIOD
constraint to effectively process the design.

In this case, it is important to add at least three additional

TIMESPECs to constrain paths within the PCI interface and those

paths to and from the portion of the user application that

communicates with the PCI interface. These TIMESPECs should

have the same value as the PERIOD constraint:

TS_UA2PCI = FROM : USER_FFS : TO : PCI_FFS

TS_PCI2UA = FROM : PCI_FFS : TO : USER_FFS

TS_PCI2PCI = FROM : PCI_FFS : TO : PCI_FFS

Note: If multiple clock domains are used, the USER_FFS flip-flops

should be limited to those that connect to the PCI interface in the PCI

clock domain.

Physical Constraints
The mapper generates a physical constraints file for use by the place

and route tool. This physical constraints file contains translated

constraints information from the user constraints file, as well as any

constraints embedded in the design itself.

Note that while the syntax of a physical constraints file looks similar

to that of a user constraints file, it can be significantly different. Addi-

tions to the physical constraints file should be performed by

advanced users only.

In all designs, data transfer between the PCI interface and the user

application occurs over the ADIO bus. As this bus has multiple data

sources and data sinks, there are a great number of potential paths for

timing analysis. Typically, registers in the user application do not

transfer data between themselves. In large designs, it is often desir-

able to eliminate false paths which trace through the ADIO bus by the

use of timing ignores (TIG ) in the physical or user constraints files.
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Guide Files
Guide files, when provided, contain routing and placement informa-

tion for a few highly critical sections of the PCI interface. For this

reason, guide files must not be modified.

The place and route tool has two guide modes. These modes are

called leveraged and exact. The guide file for use with the PCI inter-

face must be used with the exact guide mode.

Note: In order for PAR to identify exact matches between the custom-

ized user design and the guide file, the user design must be placed in

the supplied “wrapper” file. This forces net names, instance names,

and structure (hierarchy) in the customized user design to match

those in the guide file.
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