Columbia University
Department of Electrical Engineering

EECS E4340. VHDL examples.

Basic example
We will use the std_ulogic and std_ulogic_vector types defined in the
ieee.std_logic_1164 package. You have access to basic logic operators.

library ieee;
use leee.std_logic_1164.all;
entity full_adder is

port(a, b, cin: in std_ulogic;

sum, cout: out std_ulogic);

end full_adder;
architecture dataflow of full_adder is
begin

sum <= (a xor b) xor c;

carry <= (a and b) or (a and c¢) or (b and c);
end dataflow;

Other concurrent VHDL statements
when . . . else is a useful concurrent VHDL statement.

library ieee;

use leee.std_logic_1164.all;

entity multiplexer_4_1 is

port(in0, inl, in2, in3: in std_ulogic_vector(0 to 15);

s0, sl: in std_ulogic;
z: out std_ulogic_vector(0 to 15));

end multiplexer_4_1;

architecture dataflow of multiplexer_4_1 is

begin

z <= in0 when (s0 = ’0’ and s1 = ’0’) else
inl when (sO0 = 1’ and s1 = ’0’) else
in2 when (sO0 = ’0’ and s1 = ’1’) else
in3 when (sO0 = 1’ and s1 = ’1’) else

TXXXXXXXXXXXXXXXX";
end dataflow;

Here’s another way of doing the multiplexer
with . . . select is also useful.

library ieee;
use leee.std_logic_1164.all;
entity multiplexer_4_1 is
port(in0, inl, in2, in3: in std_ulogic_vector(0 to 15);
s0, s1: in std_ulogic;
z: out std_ulogic_vector(0 to 15));
end multiplexer_4_1;
architecture dataflow of multiplexer_4_1 is
signal sels: std_ulogic_vector(0 to 1);
begin
sels <= s0 & s1;
with sels select
z <= in0 when "00",
inl when "01",
in2 when "10",
in3 when "11",
TXXXXXXXXXXXXXXXX" when others;
end dataflow;

But maybe the selects cannot both be 1 or 0
Use can use VHDL assert statements to flag invalid conditions.

library ieee;
use leee.std_logic_1164.all;
entity multiplexer_2_1 is
port(in0, inl: in std_ulogic_vector(0 to 15);
s0, s1: in std_ulogic;
z: out std_ulogic_vector(0 to 15));
end multiplexer_2_1;
architecture dataflow of multiplexer_2_1 is
signal sels: std_ulogic_vector(0 to 1);
begin
sels <= s0 & s1;
with sels select

z <= in0 when "10",
inl when "01",
"XXXXXXXXXXXXXXXX" when others;
assert not(sels = "00" or sels = "11")
report "The select signals must be orthogonal!"
severity ERROR;
end dataflow;

Tristate drivers
Note the use of the resolved std_logic type on signal z.

library ieee;
use leee.std_logic_1164.all;
entity partl is

port(a, sel: in std_ulogic;

z: out std_logic);

end parti;
architecture dataflow of partl is
begin

z <= a when (sel = ’1’) else ’Z’;
end dataflow;

4-bit adder with concurrent VHDL

library ieee;
use leee.std_logic_1164.all;
entity adder is
port(a, b: in std_ulogic_vector(0 to 3);
cin: in std_ulogic;
sum: out std_ulogic_vector(0 to 3);
cout: out std_ulogic);
end adder;
architecture dataflow of adder is
signal car: std_ulogic_vector(0 to 4);
begin
car(0) <= cin;
Gl: for m in 3 downto 0 generate

sum(m) <= a(m) xor b(m) xor car(m);
car(m+1) <= (a(m) and b(m)) or (b(m) and car(m)) or (a(m) and car(m));
end generate G1;
cout <= car(4);
end dataflow;

16-bit carry-lookahead adder
Coding at this level of detail ensures that the adder is logically structured
exactly the way you want it.

library ieee;
use leee.std_logic_1164.all;
entity adder_16 is
port(a, b: in std_ulogic_vector(0 to 15);
sum: out std_ulogic_vector(0 to 15);
cout: out std_ulogic);
end adder_16;
architecture dataflow of adder_16 is
signal car: std_ulogic_vector(0 to 16);
signal pg, gg: std_ulogic_vector(0 to 3);
begin
-- full adder blocks
Gl: for m in 0 to 15 generate
sum(m) <= p(m) xor g(m) xor car(m);
g(m) <= a(m) and b(m);
p(m) <= a(m) or b(m);
end generate G1;
G2: for m in 0 to 3 generate
gg(m) <= g(4*m+3) or (p(4*m+3) and g(4*m+2)) or
(p(4*m+3) and p(4*m+2) and g(4*m+1)) or
(p(4*m+3) and p(4*m+2) and p(4*m+1) and g(4*m));
pg(m) <= p(4*m+3) and p(4*m+2) and p(4*m+1) and p(4*m));
car(4*m+1) <= g(4*m) or (p(4*m) and car(4*m));
car(4*m+2) <= g(4*m+1) or (p(4*m+1) and g(4*m)) or
(p(4*m+1) and p(4*m) and car(4*m));
car(4*m+3) <= g(4*m+2) or (p(4*m+2) and g(4*m+1)) or
(p(4*m+2) and p(4*m+1) and g(4*m)) or

(p(4*m+2) and p(4*m+1) and p(4*m)

end generate G2;

car(0) <= cin;

car(4) <= gg(0) or (pg(0) and car(0));

car(8) <= gg(1) or (pg(l) and gg(0)) or
(pg(1) and pg(0) and car(0));

car(12) <= gg(2) or (pg(2) and gg(1)) or
(pg(2) and pg(1l) and gg(0)) or

(pg(2) and pg(1l) and pg(0) and car(0));

car(16) <= gg(3) or (pg(3) and gg(2)) or
(pg(3) and pg(2) and gg(1)) or

and car(4*m)) ;

(pg(3) and pg(2) and pg(1l) and gg(0)) or
(pg(3) and pg(2) and pg(1l) and pg(0) and car(0));

cout <= car(16);
end dataflow;

4-bit adder using the std_logic_arith package

In this case, we use a “higher-level” arithmetic operator. In general, you

must be very careful when you do this because you lose control over the
detailed logic implementation of the adder (in this case). The synthesis tool
will implement this a certain way (for example, a ripple-carry adder) which

might not be acceptable for a particular application.

library ieee;

use leee.std_logic_1164.all;

use leee.std_logic_

use leee.std_logic_arith.all;

entity adder is

port(a, b: in std_ulogic_vector(0 to 3);

cin: in std_ulogic;
c: out std_ulogic_vector(0 to 3);
cout: out std_ulogic);

end adder;

architecture dataflow of adder is

signal temp_sum: std_ulogic_vector(0 to 4);

begin

temp_sum <= to_stdulogicvector((unsigned(a) + unsigned(b))

+ conv_unsigned(cin,1));
cout <= temp_sum(0);
c <= temp_sum(l to 4);
end dataflow;

Positive edge-trigger 32-bit register
VHDL process statements are the preferred mechanism for defining
flip-flops and registers.

library ieee;
use leee.std_logic_1164.all;
entity register_32 is
port(clk, write_enable: in std_ulogic;
data_in: in std_ulogic_vector(0 to 31);
data_out: out std_ulogic_vector(0 to 31));
end register_32;
architecture dataflow of register_32 is
begin
process(clk)
begin
if ((clk = ’1’) and not(clk’stable) and (write_enable = ’1’)) then
data_out <= data_in;
end if;
end process;
end dataflow;

8-bit right shifter
Note the use of the concatenation operator & to form the shifter.

library ieee;

use leee.std_logic_1164.all;

entity eight_bit_shifter is

port(shift_in: in std_ulogic_vector(0 to 7);

shift_out: out std_ulogic_vector(0 to 7);
shift_control: in std_ulogic_vector(0 to 2));

end eight_bit_shifter;

architecture dataflow of eight_bit_shifter is

signal first_stage: std_ulogic_vector(0 to 7);
signal second_stage: std_ulogic_vector(o to 7);
begin
first_stage <= shift_in when (shift_control(0) = ’0’) else
("0" & shift_in(0 to 6));
second_stage <= first_stage when (shift_control(0) = ’0’) else
("00" & first_stage(0 to 5));
shift_out <= second_stage when (shift_control(2) = ’0’) else
("0000" & second_stage(0 to 4));
end dataflow;

Dataflow example. Counter in traffic light problem.

Note how this matches precisely the “block-diagram” structure of the
design that we discussed in class. VHDL should be used to capture logic
design; it should not be used as a programming language.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
ENTITY counter IS
PORT(
long : OUT std_ulogic;
short : 0OUT std_ulogic;
start_timer : IN std_ulogic;
clock : IN std_ulogic
);
END counter;
architecture dataflow of counter is
signal latch_in, latch_out, incr_out: std_ulogic_vector(o to 6);
signal short_int, long_int, short_temp, long_temp: std_ulogic;

begin
sync: process(clock)
begin

if (clock = ’1’ and not(clock’stable)) then
latch_out <= latch_in;
short_temp <= not(start_timer) and (short_int or short_temp);

long_temp <= not(start_timer) and (long_int or long_temp);
end if;
end process;
latch_in <= "0000000" when (start_timer = ’1’) else incr_out;
incr_out <= to_stdulogicvector(unsigned(latch_out) + ’17°);
short_int <= ’1’ when (incr_out = "0100000") else
)O);
long_int <= ’1’ when (incr_out = "1000000") else
)O);

short <= short_temp;
long <= long_temp;
end dataflow;

ASM translation to VHDL. Traffic light controller.

ASM’s can be translated to VHDL in a completely formulaic manner.
One process is used for the state register. Another process can be used for
the combinational logic of the state machine. This second process must be
combinational. To ensure this, two conditions must be satisfied:

o The process must be activated by all inputs of the combinational logic

block.
o All “cases” must be covered in the logic.

Note the use of VHDL constants to define the states. This makes the
code easier to read and makes the state encodings easy to change.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY controller IS
PORT(
hl1 : OUT std_ulogic;
h10 : OUT std_ulogic;
f11 : OUT std_ulogic;
£10 : OUT std_ulogic;
start_timer : OUT std_ulogic;
clock : IN std_ulogic;

reset : IN std_ulogic;
cars : IN std_ulogic;
short : IN std_ulogic;
long : IN std_ulogic
);
END controller;
architecture behavior of controller is

signal current_state, next_state: std_ulogic_vector(o to 1);

constant HG: std_ulogic_vector := "00";
constant HY: std_ulogic_vector := "01";
constant FY: std_ulogic_vector := "10";
constant FG: std_ulogic_vector := "11";

begin

sync: process(clock)
begin
if ((clock = ’1’) and not(clock’stable)) then
current_state <= next_state;
end if;
end process sync;

fsm_comb: process(current_state, short, long, cars)

begin
next_state <= current_state;
hl1l <= ’0’;
h1l0 <= ’0’;
fl1l <= ’0’;
10 <= ’0’;
start_time <= ’0’;
if (reset = ’1’) then -- synchronous reset

next_state <= HG;
start_timer <= ’1’;
else
case current_state is
when HG =>

-- set lights

hll <= ’0’;
h1l0 <= ’0’;
fl1 <= ’0’;
f10 <= 1’

if (cars and long) = ’1’ then
next_state <= HY;
start_timer <= ’1’;

else
next_state <= HG;
end if;
when HY =>
-- set lights
hll <= ’1°’;
h1l0 <= ’0’;
fl1 <= ’0’;
10 <= ’1’;

if short = ’1’ then
next_state <= FG;
start_timer <= ’1’;

else
next_state <= HY;
end if;
when FG =>
hl1l <= ’0’;
hl0 <= ’1’;
fl1l <= ’0’;
10 <= ’0’;
if (not(cars) or long) = ’1’ then

next_state <= FY,;
start_timer <= ’1’;
else
next_state <= FG;
end if;
when FY =>
hll <= ’0’;
h1l0 <= ’1°’;

10

fl1l <= ’17;

£10 <= 0’

if (short ’1?) then
next_state <= HG;
start_timer <= ’1’;

-

else
next_state <= FY;
end if;
when others =>
next_state <= "XX";
start_timer <= ’X’;

h1l0 <= ’X’;
hll <= ’X’;
10 <= ’X’;
fl1 <= ’X’;
end case;
end if;

end process;
end behavior;

You can make a latch you don’t intend if you aren’t careful with
processes

In this case, I violated the second rule for a “combinational” process and
did not cover all cases.

library ieee;
use leee.std_logic_1164.all;
entity is_latch is
port(a: in std_ulogic;
b: out std_ulogic);
end is_latch;
architecture dataflow of is_latch is
begin
process(a)
begin
if (a = ’0’) then
b <= "1";

11

end if;
end process;
end dataflow;

Modelling an SRAM. Use of variables.
Memory modelling is really the only legitimate use of VHDL variables in
RTL design.

library ieee;
use leee.std_logic_1164.all;
entity sram_2168 is
port(io: inout std_logic_vector(0 to 3);
addr: in std_ulogic_vector(0 to 11);
ce_n: in std_ulogic;
we_n: in std_ulogic);
end sram_2168;
architecture dataflow of sram_2168 is
begin
memory: process(addr, ce_n, we_n)
type sram_array_word is std_ulogic_vector(o to 3);
variable sram_array: array(O to 4096) of sram_array_word;

begin
if (ce_n = ’0’) then
if (we_n = ’1’) then -- read the memory
io <= sram_array(to_integer(addr));
else
sram_array(to_integer(addr)) := io;
end if;
else
io <= "ZZZZ";
end if;

end process;
end dataflow;

There is a difference between signals and variables in processes
These examples indicate the subtle difference between signals and vari-
ables in processes.

12

entity what_is_b is
end what_is_b;
architecture dataflow of what_is_b is
signal a, b: std_ulogic;
begin
process
begin
a <= ’1’%;
if (a = ’1’) then
b <=1,
else
b <= ’0’;
end if;
end process;
end dataflow;’

entity what_is_b is
end what_is_b;
architecture dataflow of what_is_b is
signal b: std_ulogic;
begin
process
variable a: std_ulogic;
begin
a :=’1’°;
if (a = ’1’) then
b <= "1";
else
b <= ’0’;
end if;
end process;
end dataflow;’

Testbench example

Testbenches are how you supply a stimulus to your design.1

ENTITY test IS

13

END test;

LIBRARY ieee, light;

USE ieee.std_logic_1164.all;
ARCHITECTURE stimulus OF test IS

COMPONENT traffic_light
PORT(
h10 : OUT std_ulogic;
hl1 : OUT std_ulogic;
£10 : OUT std_ulogic;
f11 : OUT std_ulogic;
clock : IN std_ulogic;
reset : IN std_ulogic;
cars : IN std_ulogic
);
END COMPONENT;

-- Fill in values for each generic

-- Fill in values for each signal
SIGNAL hl0 : std_ulogic;
SIGNAL hll : std_ulogic;
SIGNAL f10 : std_ulogic;
SIGNAL f11 : std_ulogic;
SIGNAL clock : std_ulogic := ’07;
SIGNAL reset : std_ulogic := ’17;
SIGNAL cars : std_ulogic;

FOR ALL: traffic_light USE ENTITY light.traffic_light(schematic);
BEGIN
dut : traffic_light
PORT MAP (hl1l0, hl1, f10, f11, clock, reset, cars);
reset <= ’1’, 0’ after 1 ms;

14

clock <= not(clock) after 50 ms;
cars <= ’0’, ’1’ after 200 ms, ’0’ after 700 ms,
7’1’ after 1200 ms, ’0’ after 7200 ms, ’1’ after 7300 ms,
’0’ after 17300 ms;
END stimulus;

Testbench example using a process for waveform generation

ENTITY test IS

END test;

LIBRARY ieee, light;

USE ieee.std_logic_1164.all;
ARCHITECTURE stimulus OF test IS

COMPONENT traffic_light
PORT(
h10 : OUT std_ulogic;
hl1l : OUT std_ulogic;
£10 : OUT std_ulogic;
f11 : OUT std_ulogic;
clock : IN std_ulogic;
reset : IN std_ulogic;
cars : IN std_ulogic
);
END COMPONENT;

-- Fill in values for each generic

-- Fill in values for each signal
SIGNAL hl0 : std_ulogic;
SIGNAL hl1l : std_ulogic;
SIGNAL f10 : std_ulogic;
SIGNAL f11 : std_ulogic;
SIGNAL clock : std_ulogic := ’07;
SIGNAL reset : std_ulogic := ’17;
SIGNAL cars : std_ulogic;

15

FOR ALL: traffic_light USE ENTITY light.traffic_light(schematic);
BEGIN
dut : traffic_light
PORT MAP (hl0, hl1, f10, f11, clock, reset, cars);

reset <= ’1’, 0’ after 1 ms;
clock <= not(clock) after 50 ms;

process
begin
cars <= ’'0’;

wait for 200 ms;
cars <= '17;

wait for 500 ms;
cars <= '0’;

wait for 500 ms;
cars <= ’1’;

wait for 5000 ms;
cars <= ’'0’;

wait for 100 ms;

cars <= ’1’;

wait for 10000 ms;
cars <= ’'0’;
end process;

END stimulus;

16

