
Columbia University
Department of Electrical Engineering

EECS E4340. Problem Set #2.
Digital system design and VHDL modelling.

Due: February 18, 2004

Before you begin this problem set, you will want to go through the ”VHDL
design entry and simulation” tutorial (handed out in class) to become familiar
with the design environment and the tools which will be required to complete this
assignment. The tutorial will probably take 6-8 hours to complete so please plan
accordingly.

In this problem set, you are asked to design a sequential add-shift multiplier
that multiplies two 16-bit (unsigned) numbers returning a 32-bit product. The
datapath for the multiplier is shown in Figure 2. The algorithm for this multiplier
is illustrated in Figure 1 for two 5-bit numbers. The initial partial product (stored
in register

�
in the dataflow) is 0, as is the carry out register � . The multiplier is

initially loaded into register � and the multiplicand in register � . Each time the
multiplier bit being processed is a 1, an addition of the multiplicand, followed by
a right shift (and registers � ,

�
and � , together) is performed. Each time that the

multiplier bit is 0, only a right shift is performed. In order to count, the number
of add-shift (or just shift) operations that occur, the counter � is used. This is
initialized to 15 and counts down to 0, giving the sixteen operations required to
multiply two 16-bit numbers. When the � counter gets to zero, registers

�
and �

(together) contain the 32-bit product.
The controller you will design for this multiplier datapath has five inputs. ���

triggers the multiplication, presumably after the multiplier and multiplicand have
been loaded into registers � and

�
, respectively. �	��
��� loads the � register from

��
���
 ��� , when the state machine is in its “idle” state. ����
��� loads the � register
from ��
���
 ��� , when the state machine is in its “idle” state. You may assume that
�	��
���� and �	��
���� are synchronized and “pulsed” so that they are only high for one
cycle to perform a load, and that when they are high, the appropriate data is valid
on ��
���
 ��� . ��� ������� and ���� �! come from the datapath as status. ���� �! is the LSB of
the � register. The outputs of the controller are the appropriate control lines for
the multiplexers of the datapath. Please create and name these as you wish as you
design your controller.

1. Draw an ASM chart for the controls of your multiplier design.

1



10111
10011

00000
10111

10111
010111
10111

1000101
1000101
01000101
001000101
10111

110110101
0110110101

23
19

437

Multiplicand
Multiplier

Initial partial product
Add multiplicand, since multiplier bit is 1

Partial product after add and before shift
Partial product after shift
Add multiplicand, since multiplier bit is 1

Partial product after add and before shift

Partial product after shift, since multiplier bit is 0
Partial product after shift, since multiplier bit is 0

Partial product after shift

Add multiplicand, since multiplier bit is 1

Partial product after add and before shift
Product after final shift

Figure 1: Binary multiplication algorithm.

2. Write a complete VHDL description of your multiplier, both controls and
datapath. It is probably easiest to do this as a single entity-architecture for the
datapath and one for the controls, connected schematically in Composer. You may
only use VHDL "#����$%�%��� statements to represent latches and the combinational
logic of your ASM. All other VHDL constructs should be concurrent and should
clearly represent the underlying hardware. You are to run extensive simulations
on your design with a VHDL testbench to verify that it functions correctly.

Please turn in your complete VHDL, including your testbench (this can be
easily exported from the Cadence Composer interface). Please also hand-in the
ASM charts for your controller design. You should also turn in a description of
the functional testing you did for your design, and any waveform plots or other
results to substantiate this testing.

2



= 0

−1

"1111"
&

is_zero
'

4−bit FF
(

mux

"0"’s
&"0"

& Cout
)

+

q(0)

16
*

16
*

16−bit FF
*

16−bit FF
*

16−bit FF
*

FF

A
+

Q
,

B

controller

go

loadb
-
loadq
-
is_zero
'
q(0)

.

.

.

control signals
to datapath

C
)

shift in

shift in

mux

mux mux mux

data_in
.

product_out

multiplier

multiplicand

P

Figure 2: Binary multiplier datapath.

3


