Columbia University
Department of Electrical Engineering
EECS E4340. Laboratory #5B.
Interface Logic

Due: April 26, 2004

In this lab, you will complete the logic design of the PCI-DDR controller
and interface by designing the interface logic that will exist between the DDR
controller and the PCI core.

Based on the board design, we need to define some interfaces. At the
very top level, your design should have the following interface:

entity ddr_pci_interface is
port(-- PCI ports

AD : inout std_logic_vector(63 downto 0);
CBE : inout std_logic_vector(7 downto 0);
PAR : inout std_logic;
PARG4 : inout std_logic;
FRAME_N : inout std_logic;
REQ64_N : inout std_logic;
TRDY_N : inout std_logic;
IRDY_N : inout std_logic;
STOP_N : inout std_logic;
DEVSEL_N : inout std_logic;
ACK64_N : inout std_logic;
IDSEL : in std_logic;
INTR_A . out std_logic;
PERR_N : inout std_logic;
SERR_N : inout std_logic;
REQ_N . out std_logic;
GNT_N . in std_logic;
RST_N . in std_logic;
PCLK . in std_logic;
-- System Ports

sys_rst_n : in std_logic;
sys_clk : in std_logic;

-- DDR Interface

ddr_ad . out std_logic_vector(15 downto 0);
ddr_dm . out std_logic_vector(1l downto 0);
ddr_ba . out std_logic_vector(1l downto 0);
ddr_rasb : out std_logic;
ddr_casb : out std_logic;

ddr_web . out std_logic;

ddr_clk . out std_logic;

ddr_clkb : out std_logic;

ddr_dgs . out std_logic_vector(1l downto 0);
ddr_csb . out std_logic;

ddr_cke . out std_logic;

ddr_dq : inout std_logic_vector(15 downto 0)
);

Your top-level design will instantiate your DDR interface, the PCI core,
and some “bridge” or “glue” logic to connect them together. The ports of
this glue logic will look something like:

entity pci_ddr_bridge is
port (
-- system interface
sys_rst_n : in std_logic;
fpga_clk : in std_logic;
-- pci interface

pci_clk ¢ in std_logic;
pci_rst ¢ in std_logic;
pci_wrdn ¢ in std_logic;
pci_sdata ¢ in std_logic;

pci_base_hit : in std_logic_vector(2 downto 0);
pci_addr . in std_logic_vector(31 downto 0);
pci_addr_vld : in std_logic;
pci_data_vld : in std_logic;

pci_ready . out std_logic;
pci_term . out std_logic;
pci_abort . out std_logic;
pci_data : inout std_logic_vector(63 downto 0);

-- ddr interface

ddr_ref_ack : in std_logic;
ddr_data_vld : in std_logic;

ddr_data_i : in std_logic_vector(31 downto 0);
ddr_data_o : out std_logic_vector(31 downto 0);
ddr_cmd : out std_logic_vector(7 downto 1);

ddr_addr : out std_logic_vector(23 downto 0));

end pci_ddr_bridge;

fpga_clk is coming from the clk_dlls component of the DDR refer-
ence design and is used to clock the logic of the interface. Please remember
that the PCI core (clocked by pci_clk) and the DDR interface (clocked by
fpga_clk) are asynchronous with respect to each other. As a result, you
must be careful to synchronize signals moving between these two domains.

Please implement a simple controller that implements (non-burst) read
and write transfers. Your controller can (and probably should) incorporate
the refresh counter that you previously added onto the DDR reference design.
Following reset, you will want the controller to wait for the DLL’s to lock,
precharge the arrays, and initialize the mode registers.

If you want to be more ambitious, you can try to implement burst trans-
fers, which will probably require you to implement a FIFO buffer. I would
recommend that you get the basic read-write transfers working before at-
tempting the burst-mode implementation.

