Columbia University
Department of Electrical Engineering
EECS E4340. Laboratory #1.
PDP-8 Dataflow Design.

Due: March 3, 2004

This is the first assignment on the road to a complete PDP-8 implemen-
tation in hardware. This assignment should be completed in groups of two.
Only one assignment should be handed in per group.

In this lab, you will finish the register-level transfer description of the
PDP-8 dataflow that we went over in class. As you progress in the design
of your machine, you will be completely free to modify this datapath to
implement design improvements. The Cadence library pdp8 in
/tools2/courses/ee4340/cdslibs/pdp8
contains the schematics and components for this design. You will want to
copy over this library as the starting point for this lab.

1 Specifications

Given the following additional specifications, you are to complete the VHDL
architectures of each of the components to produce a functional PDP8 dat-
apath design. The schematic for the datapath is given in Figure 1. We will
assume that all the flip-flops in the design are positive-edge triggered.

e ac_link. This is a 13-bit rotator in which the link (as the most-
significant bit position) and accumulator are rotated together. When
cll is high, the link is cleared When cml is high, the link is com-
plemented. When right is high and left is low, the accumulator-
link rotates once right. When right is low and left is high, the
accumulator-link rotates once left. When right and left are both
low, the accumulator-link holds its current value. When right and
left are both high, the accumulator takes in a new value on the next
positive edge of the clock.

o twelve_bit_reg_hold. These are all 12-bit registers that take in new
data on a rising clock edge when the load signal is high, else they hold
their current value.

clock [p—cik

thelve_bil_reg_hold
clock [BE— clock

loadma

!

load
loteh_in<@ 11> lateh_out<@:11>

pc

twelve_bil_reg_hold
clock [— clock
loadpc — lood

loteh_in<@ 11> lateh_out<@:11>

m

twelve_bil_rag_hold
clock [Bm— clock
loadmb [—— load

lotch_in<@ 11> lotch_out<@:11>

ac_in<g:11>

ac_link

left

link
ac_out<:l 1>

_link_inst

link

alu_inst

ol p—m—|c!
eml p—m—{cm!

left

rignt [—m— rioht

mb<@:4>
ir<d-1>

ea<o:11>

splicer

twelve_bit_reg_hold
clock [m—> clock
loadir [#——load

loteh_in<@:11> lotch_out<@:11>

mem_int
dota_in<@:11> dota_out<@:11>
jmse. :: ms@
read read A mem_interfoce
uort_reod [J—— uort_read 3
v
5
E
mem<a:11> @

>

oc<a:it>
ma<@:11>
pe<a:if>
mb<@:11>

sr<@:11>

qux_inst

MU OUE<:] 1> | ———

mux

<@:1fone_bit_compore is_zero

2

alu

aport<@: 11> Aalu_out<@:11>
bport<o: 11> overflow

busaut<d 115

emp.

mblszerain

Figure 1: PDP/8 datapath.

oluzerke2> [0lu_sel<0:2.

e alu. This macro performs all of the main logical and arithmetic oper-
ations of the PDPR. data_sel<0:2> is encoded as follows:

— alu_ADD. 7000”. Performs a two’s-complement addition of aport
and bport, indicating an overflow with overflow.

— alu_INC. ”001”. Increments bport.

— alu_AND. 7010”. Performs a logical AND of aport and bport.

— alu_ZERO. 70117. Puts all zeros on the output.

— alu_OR. 7100”. Performs a logical OR of aport and bport.

— alu_MUX. ”101”. Passes the value of bport to the output.

— alu_NOTMUX. "110”. Passes the logical complement of bport to
the output.

e mux. This is a simple multiplexer with the following encoding for the
select lines:

— sel_AC. 70007
— sel_MA. 70017
— sel_IR. 70107
— sel_MB. 70117
— sel_PC. 7100”
— sel_EA. 71017
— sel_SR. 71107

— sel_NULL. ”111”7. Don’t care. Mux output not used.

e splicer. This macro is used to from the effective address by combining
the page offset in the instruction with the page address (either zero or
the address of the current page). If ir<4> is high, then mb<0:4> is
concatenated with ir<5:11> to form the effective address. If ir<4> is
low, then "00000" is concatenated with ir<5:11> to form the effective
address.

e one_bit_compare. The output is zero is the inputs are all zero. This
is used for the ISZ instruction.

e mem_interface. If jmsO is high, then the mem drivers are tristated
and data_out is driven to "100000000000". This is used to force a
subroutine call to "0000" on an external interrupt. If read is high,
then the mem drivers are tristated and data_out is driven to the value
on the mem bus, otherwise, mem is driven to the value on data_in.

2 Functional verification

The bulk of the work in this assignment is actually in functional testing of
your design. In this assignment, I want you to put a lot of effort into designing
a good testbench for your datapath. While exactly how you do this is up to
you, | offer a few guidelines:

e You want to make sure you exercise all of the ALU functions and all
of the MUX paths and perhaps simulate the execute cycles of several
instruction.

o We sure to exercise the mem_interface component with read and
writes to memory.

o Create a test sequence using only the switch register as input, one that
exercises as much of the function of the datapath as possible.

These last two items are most important, because this will allow you to use
much of your testbench in the debug of the real hardware (that is, when you
have programmed the dataflow, but have not yet programmed the controls,
but want to make sure your datapath is functioning correctly.)

3 What to turn in

Turn in the VHDL for each of your macros. Also turn in your testbench,
waveform plots, or other outputs that substantiate your testing. Include a
brief descrition of your testing methodology.

