
April 2, 2003 (Version 3.0) 1

Summary

This application note describes the PING64 example design. This example design is intended for use as a design flow test.
For detailed instructions on how to run this design through synthesis and implementation tools, please consult the
appropriate implementation guide.

Xilinx Families

Spartan-II(E), Spartan-III, Virtex(E), Virtex-II(Pro)

PCI LogiCORE Version

PCI64

Introduction
This application example, available in VHDL and Verilog,
provides an easy to understand example which demon-
strates some of the techniques required to successfully use
the PCI LogiCORE in a design.

PING64 consists of a top level VHDL or Verilog testbench
named PING_TB. This testbench contains HDL behavioral
stimulus files and PCIM_TOP. The stimulus files contain
behavioral models of an arbiter, two targets (one 32-bit tar-

get and another 64-bit target), and a central resource.
These behavioral modules interface to PCIM_TOP through
the PCI bus. The HDL wrapper, PCIM_TOP, combines
three sub-modules. The first sub-module is PCIM_LC, a
wrapper for the LogiCORE. The second is the PING64
application. The third is the CFG module, which configures
the LogiCORE interface. The PING64 sub-module is an
HDL design that interfaces to the user-application signals
from the PCIM_LC module. Figure 1 shows a block dia-
gram of the complete system.

PING64 Application Example

April 2, 2003 (Version 3.0) Application Note



Figure 1: System Block Diagram

Dumb
Host

PCI Bus

Dumb
Arbiter

Dumb
32-Bit
Target

DUT
(pcim_top)

S
T

M

A
R

B

U
U

T

T
R

G
32

STM

PING_TB

T
R

G
64

Dumb
64-Bit
Target

PCI APPLICATION NOTE

2 April 2, 2003 (Version 3.0)

LogiCORE Configuration
To configure the LogiCORE PCI interface, a special config-
uration file, cfg_ping , is used. This file must not be modi-
fied or PING64 will fail to respond properly to the simulation
controller (stimulus generator). Note that the cfg_ping
configuration file should not be used when generating a
new design. Instead, use the cfg configuration file pro-
vided in the src/xpci/ directory.

Ping User Application
The PING64 module takes its name from the TCP/IP utility
named ping which allows network users to verify that a par-
ticular machine is on a network and “alive”.

As such, PING64 is designed to provide “just enough” func-
tionality to verify a design flow. The PING64 design pro-
vides little other utility. The PING64 design accepts data as
a target PCI device, then uses the data to perform initiator
transactions over the PCI bus.

Figure 2 is a reduced block diagram of PING64. For spe-
cific details about the implementation, consult the source
code. A summary follows.

Access Decode

The access decode logic is used to generate configuration
space, memory space, and I/O space select signals. This is
achieved by monitoring the CFG_HIT and BASE_HIT sig-
nals which indicate that the current PCI transaction is
directed at the LogiCORE configuration space or to an
address space mapped by one of the base address regis-
ters in the PCI interface. In this design, BAR0 is configured
as an I/O space, BAR1 is configured as a 32-bit memory
space, and BAR2 is configured as a 64-bit memory space.

This block generates read and write select signals for each
of the four address spaces.

User Configuration Register

This 32-bit register is mapped into the user configuration
space of the PCI interface. This register is controlled by the
CFG_WR_CSand CFG_RD_CSsignals generated by the
access decode block. This is a general purpose read/write
register.

I/O32 Register

This 32-bit register is mapped into I/O space by BAR0. This
register is controlled by the BAR0_WR_CS and
BAR0_RD_CSsignals generated by the access decode
block. This is a general purpose read/write register.

Figure 2: PING64 Block Diagram

PING_REQUEST32

PING_REQUEST64

Initiator
Data

Register

User
Config

Register

IO32
Register

MEM32
Register

MEM64
Register

Initiator Control
State Machine

A
D

D
R

D
IR

 /
LE

N

Access
Decode

ADIO[63:0]

CONTROL AND STATUS

April 2, 2003 (Version 3.0) 3

MEM32 Register

This 32-bit register is mapped into memory space by
BAR1. This particular memory space is designated as 32-
bit only. This register is controlled by the BAR1_WR_CSand
BAR1_RD_CSsignals generated by the access decode
block. This is a general purpose read/write register.

MEM64 Register

This 64-bit register is mapped into memory space by
BAR2. This particular memory space is designated as 64-
bit capable. This register is controlled by the BAR2_WR_CS
and BAR2_RD_CSsignals generated by the access decode
block. This is a general purpose read/write register.

Initiator Control State Machine

The initiator control state machine is a reduced version of
the initiator control state machine presented in the Design
Guide. This state machine has five states. One state is an
“IDLE” state. When either PING_REQUEST32 or
PING_REQUEST64is asserted, the state machine transi-
tions into one of four data transfer states (“READ32”,
“WRITE32”, “READ64”, or “WRITE64”). After a transfer
completes, the state machine returns to the “IDLE” state.

The supporting glue logic is taken directly from the Design
Guide.

Initiator Data Register

This 64-bit register is the source and destination of data
during initiator transactions initiated by PING64. This regis-
ter is not memory mapped and is therefore not accessible
through target transactions to PING64. During initiator
writes, the data in this register is transferred to a target.
During initiator reads, the incoming data is stored in this
register. This register is controlled by the initiator control
state machine.

Operation
A simulation testbench is provided in both VHDL and Ver-
ilog. This HDL testbench generates PCI transactions as a
stimulus for PING64. A small PCI system is created by con-
necting the top level HDL design PCIM_TOP to a set of
behavioral PCI agents.

Initially, the testbench configures PING64 by writing to its
configuration registers. Both the base address registers are
loaded, and the master enable bit is set in the command
register.

Target Operation
All target registers are accessible by issuing the appropri-
ate bus transaction from the stimulus module. Although
there is only a single register mapped by each base
address register, PING64 will accept burst transactions.
For burst reads, the same data is transferred each data
phase. During burst writes, only the last data transferred
will remain in the register.

Initiator Operation
In order to enable PING64 to perform initiator transactions,
the testbench must set specific fields in the I/O32 and
MEM32 registers. The 32-bit data in the MEM32 register is
used as the PCI Bus address during initiator transactions.
The I/O32 register has three separate fields. Bit 31 of this
register indicates the direction of the transfer; logic one
indicates write, while logic zero indicates read.

The PCI Bus command to be used during the transaction is
specified in bits 7 through 5.

The transaction burst length (in data phases) is indicated
by bits 3 through 0.

Assuming that the testbench has already set the master
enable bit in the configuration header command register,
simply write valid settings into the I/O32 and MEM32 regis-
ters and assert either PING_REQUEST32(for a 32-bit trans-
action) or PING_REQUEST64 (for a 64-bit transaction).

Limitations and Restrictions
Xilinx, Inc. does not make any representation or warranty
regarding these designs or any item based on these
designs. Xilinx disclaims all express and implied warran-
ties, including but not limited to the implied fitness of these
designs for a particular purpose and freedom from infringe-
ment. Without limiting the generality of the foregoing, Xilinx
does not make any warranty of any kind that any item
developed based on these designs, or any portion of them,
will not infringe any copyright, patent, trade secret or other
intellectual property right of any person or entity in any
country. It is the responsibility of the user to seek licenses
for such intellectual property rights where applicable. Xilinx
shall not be liable for any damages arising out of or in con-
nection with the use of the designs including liability for lost
profit, business interruption, or any other damages whatso-
ever.

4 April 2, 2003 (Version 3.0)

