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Abstract— A 390-mm2, 16-bank, 1-Gb, double-data-rate
(DDR) synchronous dynamic random access memory (DRAM)
(SDRAM) has been fabricated in fully planarized 0.175-���m, 8F2

trench cell technology. The 1-Gb SDRAM employs a hybrid
bitline architecture with 512 cells/local-bitline (LBL). Four LBL
pairs are connected through multiplexers to each sense amplifier
(SA). Two of the LBL pairs are coupled to the SA by wiring over
two other LBL pairs using hierarchical bitlines. This results in a
reduction of the number of the SA’s to 1/4, reducing the chip size
by 6%. A hierarchical column-select-line scheme is incorporated
with a hierarchical dataline (MDQ) architecture. This makes
16-bank organization possible while sharing hierarchical column
decoders and second sense amplifiers. A hierarchical 8-b prefetch
scheme employs four MDQ’s for each read-write drive (RWD)
and two RWD’s for each DQ. This reduces the frequencies
of the MDQ’s and the RWD’s to 1/8 and 1/2, respectively. A
1-V swing signaling on the RWD is used to reduce the burst
current by 18 mA. The 1-V swing signaling is successfully
converted to 2.1 V with self-timed first-in, first-out circuitry.
The hardware data demonstrate 400-Mb/s/pin operation with a
16-mm TSOP-II package. Seamless burst operation at various
frequencies has also been confirmed. These features result in
a 1.6-Gb/s data rate for���32 200-MHz DDR operation with a
cell/chip area efficiency of 67.5%.

Index Terms—Double-data-rate (DDR), dynamic random ac-
cess memory (DRAM), hierarchical column-select-line (CSL),
hybrid bitline, low voltage, 1 Gb, prefetch, synchronous DRAM.

I. INTRODUCTION

T HE EVOLUTION of submicrometer CMOS technology
[1] has steadily improved microprocessor speed. Quadru-

pling every three years, it has realized product chips with clock
frequencies over 500 MHz [2]–[4] and even an experimental
chip with a 1-GHz clock frequency [5]. It is highly desirable
to have dynamic random access memories (DRAM’s) not only
with high density [6] but also with high performance.

Manuscript received March 16, 1999; revised June 3, 1999.
T. Kirihata, B. Ji, J. M. Ross, D. G. Netis, D. R. Hanson, L. L.-C. Hsu, D. W.

Storaska, K. P. Guay, and M. R. Wordeman are with the IBM Semiconductor
Research and Development Center, Hopewell Junction, NY 12533 USA (e-
mail: kirihata@us.ibm.com).

G. Mueller, G. Frankowsky, H. Terlezki, O. Weinfurtner, G. Daniel, A.
M. Reith, M. A. Hug, M. Selz, P. Poechmueller, and H. Hoenigschmid are
with Infineon Technologies, IBM Semiconductor Research and Development
Center, Hopewell Junction, NY 12533 USA.

Publisher Item Identifier S 0018-9200(99)08354-7.

Fig. 1. Summary of the 1-Gb SDRAM’s.

Synchronous DRAM’s (SDRAM’s) employed a three-stage-
pipeline architecture [7] and 2-b prefetch architecture [8] for
the consecutive column burst operation with an internal burst
address counter, improving the data rate up to 125 Mb/s/pin
for the 16-Mb generation. The 64-Mb SDRAM [9] intro-
duced an address incremented pipeline scheme, realizing up
to 150 Mb/s/pin. The 256-Mb SDRAM’s [10], [11] employed
a wave-pipeline scheme with first-in/first-out (FIFO) circuitry,
boosting the data rate to approximately 250 Mb/s/pin.

In a revolutionary step, the 72-Mb Rambus DRAM
(RDRAM) [12] employed 8-b prefetch and a protocol-based
design with Rambus-signaling-level (RSL) interfaces, realizing
up to 800 Mb/s/pin with 16 DQ’s, resulting in 1.6-Gb/s. The
experimental 72-Mb synchronous-link DRAM (SLDRAM)
[13] used a similar protocol-based design but also introduced
source-synchronous buses and DQ calibration to overcome the
DQ skewing problem in a different manner from the RDRAM
RSL approach. This resulted in 400 Mb/s/pin. Although these
RDRAM’s [12] and SLDRAM’s [13] can effectively improve
the DRAM data rate at the system level, the chips exhibit less
than 50% cell/chip area efficiency and are at least 10% larger
than conventional SDRAM’s with 60% cell/chip efficiency.
Hence, the SDRAM approach would be the more cost-effective
solution if it could achieve high performance.

Fig. 1 summaries the 1-Gb SDRAM’s [14]–[21]. It shows
the chip size, the cell/chip area efficiency, and the chip
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Fig. 2. Microphotograph of the 1-Gb DDR SDRAM.

maximum bandwidth (data-rate/pin the number of the
DQ’s). From the first report of the 1-Gb SDRAM’s [14]
in 1995, the 1-Gb DRAM chip size was reduced from ap-
proximately 700 mm [14] to 500 mm [18] in three years.
This results in a chip size reduction of 70 mmper year.
The cell/chip area efficiencies vary, but the average is about
60%. With this cell/chip area efficiency of 60%, the expected
1-Gb SDRAM chip size with 0.175-m, 8F cell technology is
440 mm . The maximum bandwidth previously realized was
1.6 Gb/s [16], [18] with 200 Mb/s/pin for 64 DQ’s. However,
these chips’ cell efficiencies were less than 55%, and therefore
were not a cost-effective solution.

This paper describes a 390-mm, 16-bank, 1-Gb, double-
data-rate (DDR) SDRAM [19] with 0.175-m trench cell tech-
nology [1]. The chip employs an RDRAM-like 8-b prefetch
[12] and an SLDRAM-like source-synchronous bus [13], re-
alizing 400 Mb/s/pin with a 16-mm TSOP-II module. This
results in 1.6 Gb/s with 32 DQ’s, similar to RDRAM
performance [12] for the 1-Gb generation. Cell/chip area
efficiency of 67.5% has been realized.

Section II gives an overview of the chip. Section III dis-
cusses key design attributes, including:

a) hybrid bitline architecture;
b) hierarchical column-select-line (CSL) scheme;
c) hierarchical 8-b prefetch;
d) 1-V swing read-write-drive (RWD) signaling.

Section IV shows hardware results. The paper’s conclusion is
stated in Section V.

II. CHIP OVERVIEW

Fig. 2 shows a microphotograph of the 1-Gb DDR SDRAM
[19]. The 390-mm chip size is 27.3 mm 14.3 mm, allowing
it to fit in the existing 16-mm TSOP-II package used for
the 256-Mb DRAM [22]. The chip is powered from a 2.5-
V external supply, which is regulated internally to 2.1 V for
support circuitry, 1.5 V for the array, and 1.0 V for RWD. The
chip contains four 256-Mb quadrants, each containing eight
32-Mb banks, which are arranged in a 42 matrix. Row de-
coders (RDEC’s) are located horizontally in the center of each
256-Mb quadrant. Hierarchical column decoders (HCDEC’s)
divide the 256-Mb quadrant, resulting in four 64-Mb units.
Row redundancy fuses and decoders are located horizontally in

RDEC’s design space. Each 32-Mb unit is divided into two 16-
Mb domains, where 27 flexible row redundancy replacement
elements are realized without using a separate redundancy
block [23]. Column redundancy fuses and decoders are ar-
ranged vertically in the HCDEC’s design space. Each 32-Mb
unit is divided into eight 4-Mb domains, where up to four
column redundancy replacements are possible. A total of 2752
fails can be repaired by programming redundancy with 30 646
laser blowable fuses. This is about twice the amount of fuses
and repairability as in the 220-mm, 256-Mb SDRAM [10]. A
depletion-mode NMOS current limiter [23] is also designed for
each column in order to reduce wordline-to-bitline short-circuit
current. The flexible test-mode concept [24] is used including
more than 100 stackable test states. These are actively used for
debugging and characterization. The array voltage generators
are arranged at the right and left edges of the 256-Mb quadrant.
This arrangement allows the bitline sensing voltage to be
effectively supplied from the power bus located horizontally
over the quadrant. The break between two 32-Mb banks within
a 64-Mb unit are used for arranging the power bus for the
RDEC’s vertically. The space under the power bus is used for
allocating a decoupling capacitance with trench cells for the
array voltage supply. This reduces noise generated by a bitline
sensing operation. Support circuits are located between the top
and bottom 512-Mb chip halves, where 88 bonding pins and
42 option and test pins are arranged in a single row.

When a pulsed RAS occurs, two out of 32 32-Mb banks
(or one from each chip half) are activated as a bank for16
organization. This allows a 16-independent bank configuration
with 12 rows, four banks, and ten column addresses. A chip
configuration with 32 DQ’s is also available as a bonding
option, where four out of 32 32-Mb banks are activated as a
bank. The 32 organization chip has eight independent banks
with 12 rows, three banks, and ten column addresses. The
two quadrants in the left chip half are associated with 8 DQ’s
(16 DQ’s for 32) at the left chip edge, and the two quadrants
in the right chip half are associated with 8 DQ’s (16 DQ’s for

32) at the right chip edge.

III. K EY DESIGN ELEMENTS

A. Hybrid Bitline Scheme

Each 32-Mb bank (Fig. 3) is organized into four 8-Mb
blocks, each consisting of 2-K wordlines (WL’s) and 4-K
bitline pairs (BL’s). The single-sided WL architecture [10]
supports 4-K trench cells per WL stitched with 0.13-/sq
aluminum . A hybrid BL scheme is used to improve array
efficiency. Here, 512 cells are connected to each local-BL
(LBL) wired with the tungsten layer. This is twice the
number of cells/BL used for 256-Mb DRAM’s [10], [22].
Four LBL pairs are connected to each sense amplifier (SA)
multiplexed through switches (MUX0 : 3 ) located adjacent
to the SA. Two of the LBL pairs are connected to the SA
multiplexers (MUX ) by wiring over other LBL’s using
the aluminum layer. This scheme results in a reduction of
the number of SA’s to 1/4 that of the 256-b/BL architecture,
reducing chip size by 6%. Two-K SA’s located in each
8-Mb block boundary are interleaved and multiplexed for two
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Fig. 3. Hybrid-BL architecture.

Fig. 4. Hierarchical CSL architecture.

adjacent 8-Mb blocks. This makes it possible to interleave
the HBL’s at the center of each 8-Mb block, increasing the
HBL pitch to twice the LBL pitch. The HBL capacitance
is approximately 1/4 the LBL capacitance. Since half of the
LBL’s are directly coupled to the SA’s, the additional refresh
current is only 11% greater than the standard 512-cells/BL
architecture. A sensing signal of about 100 mV is maintained
by utilizing a 35-fF deep-trench storage capacitor with 1.5-V
array voltage. Unlike previously reported hierarchical BL
schemes [25], this hybrid BL scheme uses a simple four
multiplexers for sharing sense amplifiers, resulting in no
access speed penalty. No additional array breaks are required,
minimizing the area penalty of the MUX’s.

B. Hierarchical CSL Scheme

A hierarchical column-select scheme [15] is incorporated
with a hierarchical dataline architecture [10], [22]. This im-
proves the third-metal ( ) utilization for column select and
hierarchical datalines over the array. This also makes 8-b
prefetch with two independent banks possible with minimum
silicon area penalty. Each 64-Mb unit (Fig. 4) contains two
banks: and . Each 64-Mb unit is configured as eight 8-Mb
double segments (DSEG’s). The boundary of the segment is
aligned to the second-metal ( WL stitch break. Each 8-Mb
DSEG contains eight hierarchical dataline pairs (MDQ’s).
The banks and share 64-s sense amplifiers (SSA’s),
which are located adjacent to the hierarchical column decoders

Fig. 5. Hierarchical 8-b prefetch.

(HCDEC’s). They connect to the 64 MDQ’s across the eight
DSEG’s, which then connect to local datalines (LDQ’s) in
each sense amplifier block through MDQ switches (SW).
This allows the bits to be read from the BL’s in the selected
8-Mb block to the MDQ’s, or vice versa for the write mode.
The MDQ switches are activated with a row access command,
resulting in no access penalty for the column access speed.
In order to reduce the banking penalty, the HCDEC’s drive
256 global column-select lines (GCSL’s), which are common
to banks and . Additionally each bank has four inde-
pendent bank column-select-lines (BCSLand BCSL ) per
32 GCSL’s to decode two column addresses with a bank ad-
dress. A BL is coupled to the LDQ only when both the GCSL
and BCSL are simultaneously activated. This allows bank
to be operating in signal-development mode while performing
a column access in bank by activating GCSL and BCSL
while disabling BCSL . Only 256 GCSL’s, 64 BCSL’s, and
64 MDQ pairs are allocated over each 64-Mb unit. The array
power and ground wires are arranged in the remaining space,
reducing the voltage drop that occurs when 64 bits are read or
written simultaneously for the hierarchical 8-b prefetch.

C. Hierarchical 8-b Prefetch

Each 64-Mb unit (Fig. 5) is logically divided into even
and odd 32-Mb column-address regions. Each region contains
eight sets of four even MDQ’s (MDQ0 : 3 ) or eight sets of
four odd MDQ’s (MDQo0 : 3 ). Each set of MDQe0 : 3 and
MDQo 0 : 3 supports eight burst bits for the corresponding
DQ as a hierarchical 8-b prefetch. Sixty-four bits, or eight burst
bits 8 DQ’s, are simultaneously read or written with eight
sets of MDQe0 : 3 and MDQo0 : 3 per column access. Two
out of eight burst bits on MDQe0 : 3 and MDQo are then se-
lected by one out of four pointers (PNTe0 : 3 for MDQe 0 : 3
and PNTo0 : 3 for MDQo 0 : 3 ), transferring two consec-
utive burst bits to the corresponding RWDe and RWDo
simultaneously. For a sequential burst with an odd starting
addresses, the PNTe0 : 3 are generated from incremented
addresses. For example, if the starting column address is zero,
PNTe and PNTo are simultaneously activated. On the
other hand, if the staring column address is one, incremented
PNTe and PNTo are activated simultaneously. The two
even and odd bits on RWDe and RWDo are then sent to two
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Fig. 6. A 1-V swing single-ended RWD.

FIFO circuits (FIFO and FIFO) when the FIFO input pointer
(PNTI) is enabled. PNTI includes a reordering switch so that
the even and odd bits are stored as the first and second burst
bits in FIFO and FIFO, respectively. The eight RWDe’s and
eight RWDo’s for eight DQ’s are twisted at the center of each
HCDEC and shared with the adjacent 64-Mb unit, eliminating
32 wires or 75 m per chip [26]. This hierarchical 8-b prefetch
architecture reduces the array and datapath frequencies to 1/8
(or 20-ns cycle time) and 1/2 (or 5-ns cycle time), respectively,
for the 200-MHz DDR operation. Final one out of two
selection is enabled by the FIFO output, boosting the column
burst frequency over 400 Mb/s per DQ.

D. 1-V Swing Read-Write-Drive Signaling

Reducing the column burst current is an important design
goal particularly for 32 200-MHz DDR operation. The signal
transfer from the second sense amplifiers (SSA’s) to the FIFO
circuitry is a significant contributor to the column burst current.
Single-ended RWD signaling [10] was proposed to reduce
RWD current. The result was a reduction of 50% of the current
for complementary RWD signaling [22]. A 75% current reduc-
tion would be expected on average, assuming a random data
pattern. The previous single-ended RWD signaling, however,
consumed 60 mA for 200-MHz DDR operation. This causes
a voltage drop from the external power bus, limiting the
burst frequency. When CMOS drivers are used to realize low-
voltage signaling [15], [27]–[28], the gate overdrive of the
PMOS pullup device is reduced as the voltage is reduced,
causing a speed penalty.

To improve performance, low-voltage RWD signaling is
implemented with the NMOS-only driver, shown in Fig. 6.
The NMOS pullup device has increased the gate overdrive
as the voltage is reduced, resulting in a high-speed RWD
swing. Low-threshold-voltage NMOS’s (shown encircled in
Fig. 6) are used in the RWD driver and FIFO receiver to
further improve performance at low voltage. During a read
operation, a CMOS cross-coupled SSA amplifies the 200-mV
signal on the MDQ pair, which is latched at the node GD.
MDQ’s are quickly reset when the SSAE signal turns off for
the next column command in a pipeline manner. PNT0 : 3
sequentially selects one out of four GD0 : 3 , resulting in
a 4-bit burst transfer per RWD. The FIFO circuitry uses a

Fig. 7. Measured 32-Mb bitmap and waveforms.

self-timed dynamic latch, where the 1-V-swing RWD data are
fetched at the nodeFIFO when the input pointer (PNTI) goes
high. The nodeFIFO is precharged to 2.1 V after the data have
been transferred to DQ with output pointer (PNTO). An RWD
delay monitor is used to synchronize the RWD operation with
the PNTI. The 1-V-swing single-ended RWD reduces the peak
burst current by 36 mA and reduces the average burst current
by 18 mA compared to the CMOS level (2.1 V) swing RWD
for the 32 200-MHz DDR operation.

IV. HARDWARE RESULTS

Fig. 7 shows the measured 32-Mb bitmap, which was ob-
tained using the following image-sensing procedure, which
visually demonstrates cell operation. The array is first written
with a physical “1” data pattern. A clear film with opaque
letters “Gb” is placed over the array, and the chip placed under
a microscope. The microscope light is used to illuminate the
chip. The cells that are not masked by the template collect
photo-induced electrons in the njunction of the storage
node of these cells. The collected charge changes the data
in the unmasked cells from a physical “1” to a physical “0.”
These cells appear as fails or dark areas on the bitmap. The
cells under the template retain their data and appear as passes
or light areas on the bitmap. The resulting bitmap, shown in
Fig. 7, demonstrates the successful functionality of the chip.
Fig. 7 also shows the measured CLK, CAS, DQS, and DQ
waveforms measured at 85. After the preamble of the DQS,
DQ starts to swing, while synchronizing with the DQS in a
source-synchronous manner.

Fig. 8 shows a scanning electron microscope cross section
of the array showing the deep trench as having over 35 fF
capacitance, wordline (WL: poly), local bitline (LBL: ),
hierarchical hybrid bitline (HBL: ), and master wordline
for the stitched WL architecture (MWL: ). Note that the
MWL is also pitched limited, which is successfully realized
with planarized 0.175-m, 8F trench technology [1].

Fig. 9 shows a chip microphotograph of an experimental
128-Mb DRAM. This chip was designed prior to the 1-Gb
DRAM for studying hybrid BL architecture, hierarchical
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Fig. 8. 0.175-�m, 8F2 trench technology.

Fig. 9. Microphotograph of the experimental 128-Mb DRAM.

column-select circuitry, 8-b prefetch, and 1-V-swing RWD
signaling. The 128-Mb DRAM is almost identical to the
128-Mb double units used in the 1-Gb DRAM. It does,
however, include 512 cells/BL for the right 64-Mb unit
and hybrid BL with 256 cells/BL for the left 64-Mb unit.
By opening the BL multiplexer with a test mode [24],
1024 cells/BL and hybrid BL with 512 cells/BL operation
can also be studied. Fig. 10 shows the measured refresh
currents of: 1) 512 cells/BL, 2) hybrid 256 cells/BL, and 3)
hybrid 512 cells/BL, which agree with the calculated numbers.
Although the 512 cells/BL scheme consumes 50% more
current over that measured in the conventional 256 cells/BL,
the chip size reduction due to the reduction of the sense
amplifiers is significant. The additional refresh current required
for the hybrid BL scheme with 512 cells/BL is only 11%.
Fig. 10 also shows the measured RWD waveforms with
signaling voltages of 0.5, 0.75, 1.0, and 1.5 V, demonstrating
200-Mb/s data rate with 0.75 V 1.5 V.

Fig. 11 shows the DQ waveforms and the burst currents
measured in the 1-Gb DDR SDRAM at 85at the wafer level.

Fig. 10. Measured refresh current and RWD waveforms.

Fig. 11. Measured seamless burst read waveforms for various frequencies.

Fig. 12. 400-Mb/s/pin burst read waveforms measured from the chip in
16-mm TSOP-II module.

Seamless burst read operations were performed for various
frequencies. Excellent functionality is observed for a wide
range of frequencies. The current dissipation for 167-MHz
DDR operation is 240 mA. Fig. 12 shows the clock, data
output (DQ), and data strobe (DQS) for 200-MHz DDR
operation. The waveforms were measured from the chip in
a TSOP-II module with stub series terminated logic (SSTL)
interfaces for the 8-b burst mode. After the preamble of
DQS, the DQ swings, demonstrating 400 Mb/s/pin. This
results in 1.6-Gb/s/chip bandwidth with32 organization. The
maximum operating frequency could not yet be confirmed
due to the tester limitations. Operation over 600 Mb/s/pin is
predicted by simulation, realizing 2.4 Gb/s.
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Fig. 13. Components of the chip size reduction.

TABLE I
SUMMARY OF THE 390-mm2, 1-Gb DDR SDRAM

V. CONCLUSIONS

A 390-mm , 16-bank, 1-Gb DDR DRAM with 0.175-m
CMOS trench technology has been demonstrated. This chip
realized high performance of 1.6-Gb/s or beyond while
maintaining superior cell/chip area efficiency of 67.5%. This
demonstrates the feasibility of over 200-MHz DDR SDRAM
operation with an approach that is more cost effective than
other approaches [12], [13], [16], [18], making DDR SDRAM
a potential candidate for future computer systems. These
accomplishments have been realized by the following key
ideas:

1) hybrid-BL architecture;
2) hierarchical CSL scheme;
3) hierarchical 8-b prefetch;
4) 1-V swing RWD signaling.

This paper also discussed the important advantages of the
trench cell technology over the stacked cell technology to
enable 512 cells/BL, an additional layer for the hybrid BL,
and 4-K stitched WL architecture in 0.175-m minimum
features. Fig. 13 shows the components of chip size reductions,
where the chip size reference is extrapolated from a 256-Mb
DRAM [10]. The 14.3 27.3 mm , 1-Gb DRAM [19] has
realized 67.5% cell/chip efficiency, which is approximately
15% smaller than a conventional chip [10] with 57% cell/chip

efficiency. Table I summarizes the chip’s features and process
technology.
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